Ejercicios CLASE Nº 1: Biofísica 2025

- 1) ¿Qué entiende por magnitud fundamental y qué entiende por magnitud derivada? ¿Qué es el S.I.? ¿Cuántas magnitudes fundamentales hay en el S.I.? Expréselas y coloque las correspondientes unidades
- 2) Identificar las siguientes magnitudes físicas y expresarlas en las correspondientes unidades del S.I.
 - a) 90 min
 - b) 3,6 ks
 - c) 180 hs
 - d) 1 hora
 - e) 638 ms
 - f) 43 das
 - g) 938 cs
 - h) 3 dm
 - i) 60 cm

- j) 0,0108 km
- k) 5,009 hm
- 1) 0,215 dag
- m) 20,903 dg
- n) 412,8 g
- o) 1,579 hg
- p) 0,039 mm
- q) 4 μm
- r) 3 pg
- 3) Pasar las siguientes magnitudes físicas a notación científica:
 - a) 39500 m
 - b) 0,073 s
 - c) 12 m
 - d) 43 000 000 g
 - e) 0,000 000 000 7 km
 - f) 0,002 3 hm

- g) 0,31 s
- h) 18 000 000 km
- i) 745 000 000 m
- j) 0,1 cm
- k) 337 kg
- l) 1 000 000 000 000 g
- 4) Escribir las cantidades correspondientes a las siguientes magnitudes físicas, en términos del S.I.
 - a) $3,6.10^5$ m
 - b) 1,8.10⁻³ hm
 - c) $8,48.10^9 \text{ kg}$
 - d) 2,3.10⁻⁷ g
 - e) $4.7.10^2$ m

- f) 10^7 km
- g) 1,03.10⁻⁵ s
- h) 4,38.10⁻¹ mA
- i) 10^5 m
- j) 7,2.10⁻¹ g

- 5) Expresar en m² las siguientes cantidades:
 - a) 32900 cm²
 - b) 657 dam²
 - c) 3 km^2
 - d) 1800000 dm²
 - e) 350 hm^2
 - f) 6 m^2
 - g) 567000 mm²

- h) 95 hm²
- $i) \quad 0.7 \text{ km}^2$
- j) 89700 cm²
- k) 4560 dam²
- 1) 3000 dm^2
- m) $650500 \, \mu m^2$
- 6) Expresar en m³, litros (l) y mililitros (ml) los siguientes volúmenes:
 - a) 32900 cm³
 - b) 657 dam³
 - c) 3 km^3
 - d) $1 800 000 \text{ dm}^3$
 - e) 350 hm^3
 - f) 6 m^3
 - g) 567000 mm³
 - h) 95 hm³
 - i) 0.7 km^3
 - j) 89700 cm^3
 - k) 4560 dam³
 - 1) 3000 dm³

- m) 650500 mm³
- n) 0,61
- o) 18 ml
- p) 22301
- q) 312 cl
- r) 7560 ml
- s) 250 ml
- t) 56 µl
- u) 76 m^3
- v) $9.5.10^{12}$ ml
- w) $3,0.10^3$ l
- 7) Sabiendo que en unidades del S.I., $g = 9.81 \text{m/seg}^2$, y que 1 pie = 0.3048m, y que cada pie a su vez se divide en 12 pulgadas (*in*), ¿Cuál de las siguientes expresiones es correcta para g?
- a) $g = 116.10^3 in/min$
- b) $g = 1.39.10^6 in/min$
- c) $g = 23, 1.10^3 in/min$
- d) $g = 423.10^5 in/min$
- 8) Despejar "x" de las siguientes ecuaciones:
 - a) 3x + 2y = 12

c) 65 = 3.(8 + x)

b) $y = 3 + \frac{1}{2}x$

d) $2^3 = \frac{x}{3} + 5y$

9) Dadas las siguientes ecuaciones lineales, calcule la pendiente, la ordenada al origen y la abscisa al origen:

a)
$$5x - 3y = 10$$

b)
$$y = 7x - 2$$

c)
$$x = 5y + 9$$

d)
$$10 = -x + 14y$$

e)
$$8 = -3x + 6x + x - y$$

10) Identifique a partir de la siguiente ecuación cuadrática, las coordenadas del vértice y sus raíces.

$$y = 2x^2 - 4x + 1$$

11) Teniendo el triángulo rectángulo de la figura, determine los valores faltantes para cada caso (lados A, B y C; ángulo θ).

a)
$$\theta = 35^{\circ}$$
 A= 25 m

b)
$$A = 30 \text{ m}$$
 $B = 8$

c)
$$B = 25 \text{ cm}$$
 $C = 19 \text{ cm}$

d) sen
$$\theta = 0.766$$
 C = 12 cm

CINEMATICA: MRU y MRUA:

Ejercicio Nº 1:

Un automóvil viaja en línea recta con una velocidad media de 1200 cm/s, durante 9 segundos, y luego con una velocidad media de 480 cm/s, durante 7 segundos. Si ambas velocidades tienen el mismo sentido.

- a) ¿Cuál es el desplazamiento total en el viaje de 16 segundos?
- b) ¿Cuál es la velocidad media del viaje completo?

Ejercicio Nº 2:

Un cohete en medio del espacio sideral enciende sus propulsores y parte del estado de reposo con una aceleración constante, alcanzando en 30 segundos, una velocidad de 588 m/s. Calcular:

- a) Aceleración
- b) ¿Qué espacio recorrió durante esos 30 segundos?

Ejercicio Nº 3:

Un automóvil parte del reposo. A los 5 segundos alcanza una velocidad de 90 km/h. Si su aceleración es contante, calcular:

- a) ¿Cuánto vale la aceleración?
- b) ¿Qué espacio recorrió en esos 5 segundos?
- c) ¿Qué velocidad tendrá a los 11 segundos?

Ejercicio Nº 4:

Si un cuerpo tarda 4 s en llegar al suelo. ¿De qué altura cayó?