Cómo reconocer que es una DISTRIBUCIÓN BINOMIAL

- 1) Un experimento binomial consiste en n ensayos idénticos de Bernoulli.
- 2) Los procesos de tipo Bernoulli se caracterizan por la obtención de dos resultados posibles: éxito o fracaso.
- 3) La probabilidad de éxito se denota con p y es constante para todas las repeticiones del experimento. La probabilidad de fracaso es q = 1-p, pues se trata de eventos complementarios y mutuamente excluyentes.
- **4)** Cada uno de los ensayos Bernoulli proporciona resultados que son independientes.

DISTRIBUCIONES DE PROBABILIDAD:

DISTRIBUCIONES DE PROBABILIDAD BINOMIAL:

Actividad 15. Entre las mujeres que trabajan, el 25% nunca se ha casado. Se seleccionan al azar a 10 mujeres con empleo.

n = 10

Variable: X: "Cantidad de mujeres que nunca se ha casado" X = 0, 1, 2,..., 10. Variable cuantitativa discreta. Entonces usamos una distribución binomial donde:

p = 0,25 probabilidad de éxito

q = 0,75 probabilidad de fracaso

a. ¿Cuál es la probabilidad de que exactamente 2 mujeres de la muestra nunca se hayan casado?

$$P(X=2) = \frac{10!}{2!.8!} \cdot (0,25)^2 \cdot (0,75)^8 = C(10,2) \cdot (0,25)^2 \cdot (0,75)^8 = 45.0,0625.0,10 \approx 0,28$$

Por lo tanto, la probabilidad de que exactamente 2 mujeres de la muestra nunca se hayan casado es aproximadamente 0,28.

b. ¿Cuál es la probabilidad de que como máximo 3 mujeres nunca se hayan casado?

$$\begin{array}{ll} \mathsf{P}(\mathsf{X} \leq 3) &=& \mathsf{P}(\mathsf{X} = 0) + \mathsf{P}(\mathsf{X} = 1) + \mathsf{P}(\mathsf{X} = 2) + \mathsf{P}(\mathsf{X} = 3) &=& \frac{10!}{0!.10!} \cdot (0,25)^0 \cdot (0,75)^{10} + \frac{10!}{1!.9!} \cdot (0,25)^1 \cdot (0,75)^9 + \frac{10!}{2!.8!} \cdot (0,25)^2 \cdot (0,75)^8 + \frac{10!}{3!.7!} \cdot (0,25)^3 \cdot (0,75)^7 &=& \\ \mathcal{C}(10,0) \cdot (0,25)^0 \cdot (0,75)^{10} + \mathcal{C}(10,1) \cdot (0,25)^1 \cdot (0,75)^9 + 0,28 + \mathcal{C}(10,3) \cdot (0,25)^3 \cdot (0,75)^7 &\cong& \\ 0,77 \end{array}$$

Así, la probabilidad de que como máximo 3 mujeres nunca se hayan casado es 0,77.

Actividad 20. Se conoce por estudios anteriores que la probabilidad de que un agente de seguros consiga vender una póliza en una entrevista con un cliente es de 0,1.

- a. ¿Cuál es la variable en estudio?
- a. La variable en estudio es X: "Cantidad de pólizas que vende un agente"
- **b.** ¿Cuáles son la probabilidad de éxito y de fracaso?
- **b.** La probabilidad de éxito es p = 0.1 y la probabilidad de fracaso es q = 0.9.
- c. ¿Cuántas pólizas esperaría vender este agente si entrevista a 15 personas? (Esperanza=n.p)

c. La cantidad de pólizas que esperaría vender este agente si entrevista a 15 personas es n.p = 15.0,1 = 1,5.

Actividad 21. En un barrio en el que hay muchos bares, se sabe que el 30% de sus vecinos sufren de insomnio. Si se toma una muestra de 10 vecinos, ¿cuál es la probabilidad de que 2 de ellos sufran de insomnio? ¿Cuál es la variable en estudio?

n = 10.

La variable en estudio es X: "Cantidad de vecinos que sufren insomnio". X=0, 1,...,10. Variable cuantitativa discreta. Entonces usamos una distribución binomial donde:

p = 0,3 probabilidad de éxito.

q = 0,7 probabilidad de fracaso.

Entonces, la probabilidad de que 2 de ellos sufran de insomnio es:

$$P(X=2) = \frac{10!}{2!.8!} \cdot (0,3)^2 \cdot (0,7)^8 = C(10,2) \cdot (0,3)^2 \cdot (0,7)^8 \cong 45.0,09.0,06 \cong 0,233.$$

Actividad 22. En un sondeo sobre la actitud hacia la donación de órganos se encuentra que en una determinada población hay un 80% de sujetos que están a favor. Si se extrae una muestra aleatoria de 10 sujetos obtenga lo siguiente:

```
n = 10. 
X: "Cantidad de personas que están a favor de la donación de órganos". 
p = 0,80. 
q = 0,20.
```

- a. Probabilidad de que 4 personas estén a favor.
- a. $P(X = 4) = C(10,4).(0,80)^4.(0,20)^6 \cong 0,0055.$

La probabilidad de que 4 personas estén a favor es 0,0055.

b. Probabilidad de que más de 4 personas estén a favor.

```
b. P(X > 4) = 1 - P(X \le 4) = 1 - (P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)) = 1 - (C(10,0).(0,80)^0.(0,20)^{10} + C(10,1).(0,80)^1.(0,20)^9 + C(10,2).(0,80)^2.(0,20)^8 + C(10,3).(0,80)^3.(0,20)^7 + C(10,4).(0,80)^4.(0,20)^6) \cong 1 - (0,00000001 + 0,0000004 + 0,0000073 + 0,00079 + 0,0055) \cong 1 - 0,0064 \cong 0,994.
```

Por lo tanto, la probabilidad de que más de 4 personas estén a favor es 0,994.

c. Probabilidad de que menos de 4 personas estén a favor.

```
c. P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = C(10,0).(0,80)^{0}.(0,20)^{10} + C(10,1).(0,80)^{1}.(0,20)^{9} + C(10,2).(0,80)^{2}.(0,20)^{8} + C(10,3).(0,80)^{3}.(0,20)^{7} \cong 0,0000001 + 0,000004 + 0,000073 + 0,00079 \cong 0,00087.
```

Así, la probabilidad de que menos de 4 personas estén a favor es 0,00087.

d. Probabilidad de que como máximo 4 personas estén a favor.

```
d. P(X \le 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = C(10,0).(0,80)^0.(0,20)^{10} + C(10,1).(0,80)^1.(0,20)^9 + C(10,2).(0,80)^2.(0,20)^8 + C(10,3).(0,80)^3.(0,20)^7 + C(10,4).(0,80)^4.(0,20)^6 \approx 0,0000001 + 0,000004 + 0,000073 + 0,00079 + 0,0055 \approx 0,0064. Entonces, la probabilidad de que como máximo 4 personas estén a favor es 0,0064.
```

e. Probabilidad de que como mínimo haya 7 personas a favor.

```
e. P(X \ge 7) = P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10) = C(10,7).(0,80)^7.(0,20)^3 + C(10,8).(0,80)^8.(0,20)^2 + C(10,9).(0,80)^9.(0,20)^1 + C(10,10).(0,80)^{10}.(0,20)^0 \cong 0,20 + 0,30 + 0,27 + 0,11 \cong 0,88.
```

Por lo tanto, la probabilidad de que como mínimo haya 7 personas a favor es 0,88.

- f. Probabilidad de que estén en contra 4 o más personas.
- f. Redefinimos la variable:

X = "Cantidad de personas que están en contra de la donación de órganos".

p = 0,2.

q = 0.8.

$$\begin{split} P(X \ge 4) &= 1 - P(X < 4) = 1 - (P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)) = 1 - \\ (C(10,0).(0,20)^{0}.(0,80)^{10} &+ C(10,1).(0,20)^{1}.(0,80)^{9} &+ C(10,2).(0,20)^{2}.(0,80)^{8} &+ \\ C(10,3).(0,20)^{3}.(0,80)^{7}) &\cong 1 - (0,11 + 0,27 + 0,3 + 0,2) &\cong 0,12. \end{split}$$

Así, la probabilidad de que estén en contra 4 o más personas es 0,12.