Asociación Madrileña de Calidad Asistencial

Noviembre, 2013

Metodología TRIZ para la creatividad e innovación

Índice

- Introducción a la creatividad e innovación
- Fundamentos TRIZ
- Juan Torrubiano: telf.: 629039652

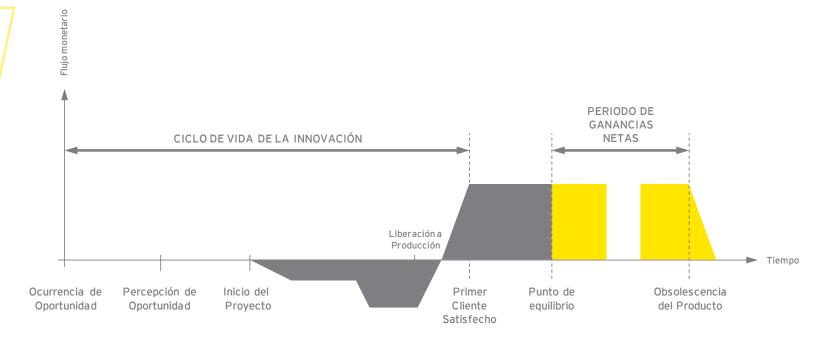
 Beneficios TRIZ

- Aplicación de TRIZ
- Herramientas de aplicación
- Experiencias de aplicación

Introducción a la creatividad e innovación: Orientados a crear la demanda del mercado

La empresa moderna necesita un amplificador en las fases de la resolución y generación de ideas de modo que conviertan la creatividad y la innovación en fiable, reproducible, una competencia básica y una actividad cotidiana

¿De dónde vendrán los productos o servicios comercializados en los próximos años?


Estos productos o servicios RESULTARÁN de la culminación de la realización práctica del proceso de INNOVACIÓN.

Nuevas tecnologías abren nuevos mercados

Vivimos en un marco en el que una constante diversificación de los productos condiciona el mercado, debido a:

- Rápida aceleración de la innovación tecnológica,
- Ciclos de vida reducida de los productos y,
- Diversificación de las necesidades de los clientes.

Nuestro objetivo ha de ser acortar el tiempo de ciclo de la innovación y que, de esa manera, podemos incrementar el retorno a la inversión y la satisfacción del cliente con nuestro producto

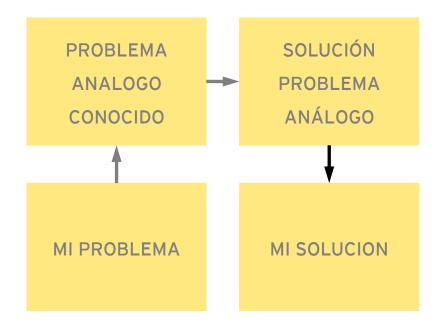
Ese método soporte o amplificador para la resolución de problemas a través de la generación de ideas en base a la innovación y a la creatividad es TRIZ.

TIPOS DE PROBLEMAS

SOLUCIONES CONOCIDAS:

Las soluciones se encuentran en bibliografías, expertos, congresos, etc...

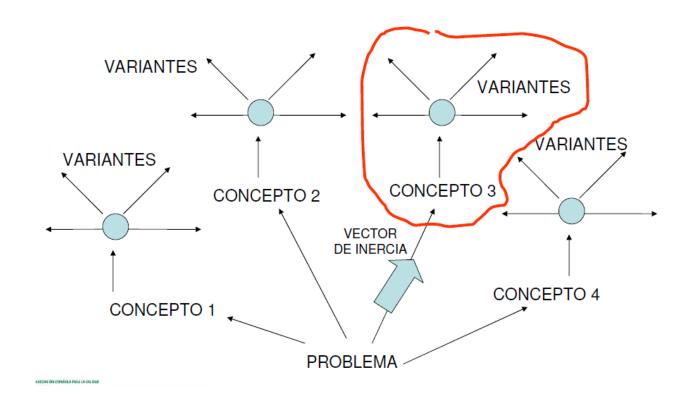
SOLUCIONES NO CONOCIDAS:


No hay constancia de soluciones análogas

Requisitos contradictorios

Problemas inventivos

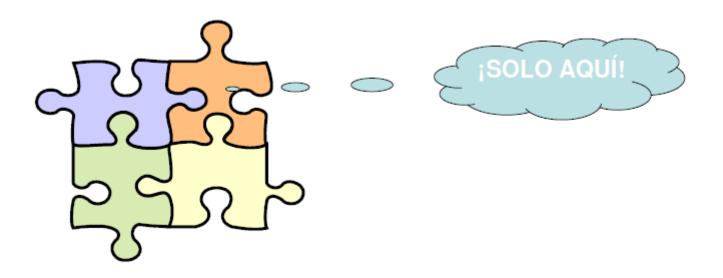
SOLUCIONES CONOCIDAS



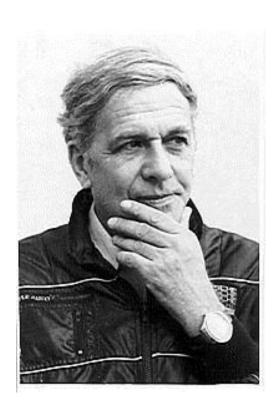
TIPOS DE PROBLEMAS

SOLUCIONES NO CONOCIDAS

- Interviene la psicología
- Creatividad
- Prueba error
- La complejidad del problema viene dada por el número de áreas de conocimiento involucradas
- Inercia Psicológica.

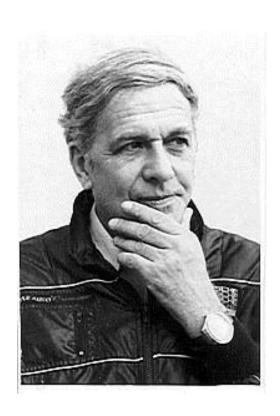


EFECTO DE LA INERCIA


El pensamiento creativo no es aleatorio.

La inercia lo limita al campo de la experiencia personal.

¿Qué es TRIZ? Una metodología basada en el conocimiento



Tieoriya Riesheniya Izobrietatielskij Zadach

TRIZ (pronunciado TREEZ) es el acrónimo ruso de la Teoría de Resolución de Problemas de Inventiva. Este enfoque algorítmico probado para resolver problemas técnicos se inició en 1946 cuando el ingeniero ruso y científico Genrikh Altshuller revisó cerca de 200.000 patentes, clasificándolas por su principio inventivo. A partir de su estudio, Genrikh fue capaz de identificar una serie de pasos necesarios, presentes en la mayoría de invenciones, que podían aplicarse a cualquier nueva invención que se intentará acometer.

Es decir, descubrió que la evolución de un sistema técnico no es un proceso aleatorio sino que se rige por ciertas leyes objetivas; pudiendo utilizarse estas leyes para desarrollar conscientemente un sistema a lo largo del camino de su evolución técnica mediante la determinación y aplicación de las innovaciones.

¿Qué es TRIZ? Una metodología basada en el conocimiento

Tieoriya Riesheniya Izobrietatielskij Zadach

TRIZ, como proceso sistemático, permite a cualquier técnico desarrollar significativamente sus habilidades de pensamiento crítico y fomentar sus capacidades tanto inventiva como creativa para la resolución de problemas.

¿Qué es TRIZ? Innovación y creatividad

La metodología TRIZ consiste en un conjunto de herramientas basadas en el conocimiento.

PROBLEMA INVENTIVO

Altshuller definió problema inventivo como aquel en el cual:

"La solución natural crea otro problema".

Existe una contradicción.

Frecuentemente nos conformamos con una solución de compromiso no ideal

SOLUCIÓN INVENTIVA

Cuando *el inventor elimina la* contradicción.

No es necesaria la solución de compromiso

NIVELES DE INVENTIVA

NIVEL	GRADO DE INVENTIVA	% DE SOLUCIONES	FUENTE DE CONOCIMIENTO
1	SOLUCIÓN CLARA	32%	PERSONAL
2	MEJORA MENOR	45%	EMPRESA
3	MEJORA MAYOR	18%	INDUSTRIA
4	NUEVO CONCEPTO	4%	OTRAS INDUSTRIAS
5	DESCUBRIMIENTO	1%	TODO

"Somebody someplace has already solved this problem (or one very similar to it).

Creativity is now finding that solution and adapting it to this particular problem."

La investigación que Genrikh Altshuller lideró se apoya en la hipótesis de que hay principios universales de la creatividad que son la base de aquellas innovaciones creativas responsables de la evolución tecnológica. A raíz de su investigación, estos principios fueron identificados y codificados abriendo las puertas a un proceso de creatividad más predecible en el que las siguientes tres premisas emergen como fundamentos de la metodología TRIZ:

- Los problemas y soluciones se repiten en todas las industrias y ciencias, de manera que la clasificación de las contradicciones de cada problema predice las soluciones creativas al mismo,
- Los patrones de cualquier evolución técnica se repiten en todas las industrias y ciencias y,
- Las innovaciones creativas hacen uso de efectos científicos fuera del campo en el que fueron desarrollados.

EL DESCUBRIMIENTO

Del examen de 1.500.000 de patentes Altshuller descubrió que:

Más del 90% de los problemas ya se habían resuelto antes.

EL DESCUBRIMIENTO

Existen 39 Parámetros Ingenieriles:

(Velocidad, peso, volumen, etc.)

Existen 40 Principios Inventivos:

(Segmentación, asimetría, homogeneidad, etc.)

EL MÉTODO TRIZ

- 1. Formular la mejora en términos de *Parámetros Ingenieriles* (los 39)
- 2. Detectar el efecto indeseable que la mejora "natural" generaría en otros Parámetros Ingenieriles *Identificar la Contradicción*
- 3. Ir a la tabla de contradicciones de Altshuller y obtener los *posibles Principios Inventivos* (los 40) *a utilizar*.

¿Por qué TRIZ?

1 REDUCE LA PRUEBA Y EL ERROR

► La metodología TRIZ <u>disminuye</u> la PRUEBA y ERROR de soluciones ante los problemas existentes a través de una serie de pasos definidos

3 SUPERA LA INERCIA PSICOLÓGICA

▶ Basada en paradigmas o hábitos anteriores, la inercia psicológica nos aleja de la solución, impide a menudo el reconocimiento del problema y su clarificación, crea barreras así como complica la toma de decisiones

P FOMENTA LA INNOVACIÓN

La metodología TRIZ <u>ayuda a superar</u>
 las barreras a la innovación y a la creatividad

ORIENTACIÓN A SOLUCIÓN

► TRIZ dirige la búsqueda de la solución mediante aproximación empírica dado que las personas poseen conocimiento limitado y es de gran dificultad para una persona o para la organización ser experta en muchas áreas

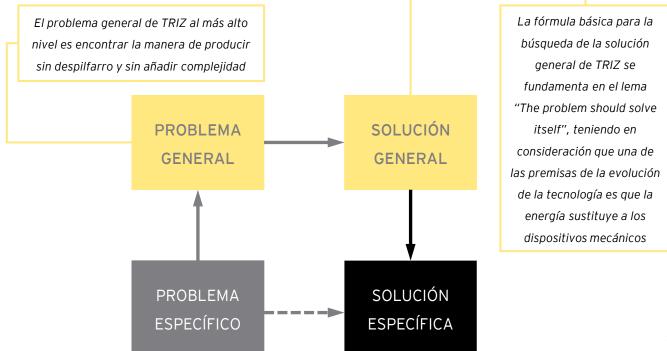
Beneficios de la aplicación de la metodología TRIZ

"I know of no other approach to inventing that offers such a rich arsenal of both practical and imaginative thinking tools."

George Prince

Co-fundador de Synectis, Inc

- Metodología DE GARANTÍAS por ser un proceso sistemático basado en las leyes de la evolución de sistemas técnicos y en las mejores prácticas llevadas a cabo por miles de desarrolladores y científicos.
- MAYOR VELOCIDAD de DESARROLLO de sistemas, reflejada en la evolución de nuestra civilización.
- ALTA CAPACIDAD de SIMPLIFICAR y REDUCIR la complejidad de los problemas del más alto al más sencillo nivel para cualquier profesional cualificado con un mínimo de experiencia.
- AMPLIFICADOR NATURAL de nuestro talento, conocimiento y experiencia potenciando nuestras capacidades creativas e inventivas.
- ► SIN CONDICIONES LIMITANTES para su aplicación.
- CAPACIDAD para ayudar a superar las limitaciones científicas.
- ► EFECTO de TRANSFORMACIÓN respecto a la psicología tradicional.
- ► COMPATIBILIDAD y FACILIDAD de INTEGRACIÓN en aplicación con otros métodos probados de desarrollo de diseño y mejores prácticas.
- ► ENFOQUE METODOLOGICO PROPIO para la creación de proyectos y resolución de problemas.



Aplicación de la metodología TRIZ (1/4): TRIZ, un proceso sistemático para la innovación

En el esquema gráfico de la presente diapositiva, las flechas representan la transformación de la formulación de un problema o una solución a otro u otra. En concreto, las flechas continuas se corresponden con el análisis de los problemas y el uso analítico de las bases de datos de la metodología TRIZ y la flecha discontinua representa el pensamiento por analogía capaz de desarrollar la solución específica.

Identificar el problema Desarrollar conceptos Valorar Implementar

Poner en práctica la metodología TRIZ es en gran medida aprender los patrones de repetición de problemas - soluciones, los patrones de la evolución técnica y los métodos de uso de efectos científicos para finalmente aplicar los patrones generales de TRIZ a la situación concreta a la que el desarrollador se enfrenta.

Aplicación de la metodología TRIZ (2/4): Enfoque para la resolución de problemas

NIVELES DE SOLUCIÓN

Nivel 1 - Elemental (sin invención)

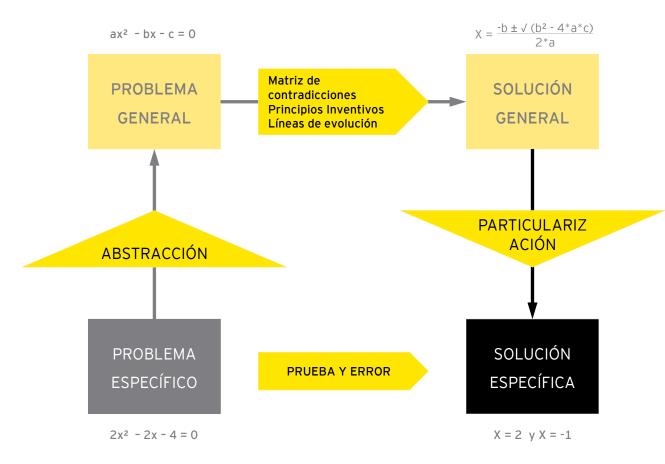
Soluciones establecidas conocidas y rápidamente accesibles

Nivel 2 - Mejora

Pequeñas mejoras de sistema existente, usualmente con algún compromiso

Nivel 3 - Invención dentro del paradigma

Mejoras esenciales de sistema existente


Nivel 4 - Invención fuera del paradigma

Concepto para nueva generación de sistema existente, cambiando principio de comportamiento de la función primaria

Nivel 5 - Descubrimiento

Invención pionera de un sistema esencialmente nuevo

¿Cómo aplicar la metodología TRIZ?

Aplicación de la metodología TRIZ (3/4): Herramientas para la resolución de problemas

En la resolución de cualquier problema técnico, una o varias herramientas pueden ser utilizadas. Sin embargo, "The 40 Principles of Problem Solving" es la herramienta más accesible de la metodología TRIZ. Estos son los principios identificados como más repetidos en concepto de solución a muchas contradicciones generales que se encuentran en la razón de ser de muchos problemas técnicos.

Las soluciones generales de TRIZ mencionadas en las diapositivas anteriores han sido desarrolladas a lo largo de más de 60 años de investigación TRIZ y clasificadas u organizadas de diferentes maneras.

Algunas de estas soluciones se corresponden con métodos analíticos tales como:

- Resultado final ideal e idealidad
- Análisis, modelización y ajuste funcional
- Identificación de zonas de conflicto (familiar para metodología Six Sigma como, por ejemplo, análisis de causa raíz o "Root Cause Analysis")

Otras soluciones son más prescriptivas, como pueden ser:

- Los 40 principios inventivos para la resolución de problemas
- Los principios de separación
- Leyes de la evolución técnica y la previsión tecnológica y,
- 76 soluciones estándar

Aplicación de la metodología TRIZ (4/4): Aspectos relevantes en la resolución de problemas

TRIZ identifica 40 principios que resuelven las contradicciones técnicas y 4 principios de separación que resuelven las contradicciones físicas La metodología TRIZ declara fundamental eliminar toda fuente de contradicción para la resolución de problemas, reconociendo contradicciones de dos tipos:

CATEGORÍA

DEFINICIÓN

Contradicciones TÉCNICAS

Se considera contradicción técnica a la clásica ingeniería de "trade-off" tal que el estado deseado no puede ser alcanzado porque alguna otra cosa en el sistema lo impide. Esto es, mientras alguna cosa se mejora en el sistema, otra cosa empeora.

EJEMPLOS

El ancho de banda de un sistema de comunicación aumenta su velocidad (bien), pero requiere mayor alimentación de energía (malo).

Contradicciones FÍSICAS

O también llamadas contradicciones "inherentes", se corresponden con situaciones en las que un objeto o sistema tiene requisitos opuestos, contradictorios.

El software debe ser complejo (para tener muchas características), pero debe ser simple (para ser fácil de aprender).

Herramientas de la metodología TRIZ : Resultado Final Ideal e Idealidad

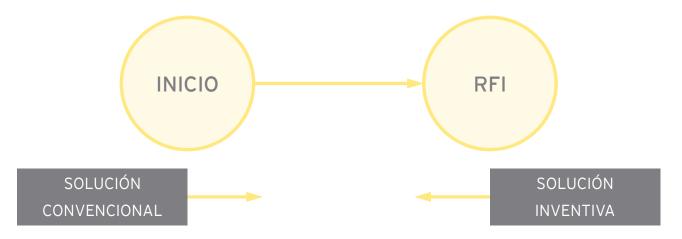
El camino general para mejorar cualquier sistema es maximizar la razón de idealidad, a la par que se crean y seleccionan soluciones inventivas

¿Qué es el Resultado Final Ideal "RFI"?

RFI es la mejor solución imaginable del problema de manera que un elemento del sistema o un elemento en el ambiente que rodea el mismo realizará la (s) función (es) deseada (s) **por sí mismo** sin costo (s) o efecto (s) dañino (s).

El Resultado Final Ideal (RFI) tiene las siguientes 4 características:

- Eliminar las deficiencias del sistema original,
- Conservar las ventajas del sistema original,
- Usar recursos libres o disponibles para no hacer más complicado el sistema y,
- No introducir nuevas desventajas.


Herramientas de la metodología TRIZ : La idealidad mide el progreso hacia el RFI

El Resultado Final Ideal no produce efectos dañinos, no añade costes y satisface los requerimientos del cliente

Enfoque de idealidad

TRIZ proporciona dos enfoques generales para el desarrollo de soluciones cercanas a lo ideal, es decir, soluciones que no incrementan la complejidad del sistema:

- Un sistema ideal lleva a cabo una función requerida sin existir en realidad y,
- La función se lleva a cabo sin necesidad de nuevos recursos, usando aquellos existentes: físicos, químicos, geométricos, etc.

Herramientas de la metodología TRIZ : Patrones de evolución

- Aspectos relevantes en el desarrollo no uniforme de elementos del sistema
 - Cada componente del sistema tiene su propia curva tipo S
 - Diferentes componentes evolucionan habitualmente de acuerdo a su propia programación
 - Diferentes componentes del sistema alcanzan sus límites inherentes en diferentes momentos, derivando en contradicciones
 - Aquel componente del sistema que alcanza su límite primero es quien "frena" el sistema global
 - La eliminación de contradicciones permite al sistema continuar mejorando

Herramientas de la metodología TRIZ : Principios de separación

TRIZ busca eliminar las contradicciones físicas por SEPARACIÓN de los requerimientos contradictorios

SEPARACIÓN EN EL ESPACIO

Si algo es contradictorio físicamente en términos de espacio, separaremos el requisito asignando las características al sistema en diversas localidades.

SEPARACIÓN ENTRE PARTES Y EL TODO

- ► Si algo es contradictorio, ¿podemos hacer que aunque las partes hagan una cosa individualmente el resultado total sea precisamente lo contrario?
- Una característica puede tener un valor en el nivel de sistema y un valor opuesto en el nivel de componente, o ni siguiera existir (o viceversa).

SEPARACIÓN EN EL TIEMPO

- Una característica se hace grande en determinado momento, pequeña en otro.
- Una característica se presenta en determinado momento, se ausenta en otro.

SEPARACIÓN DE ACUERDO A CONDICIONES

- Una característica es alta dentro de una condición y baja dentro de otra.
- Una característica está presente dentro de una condición y ausente en la otra.

VER DETALLE DE CADA PRINCIPIO EN: http://www.triz40.com/aff_Principles.htm

Herramientas de la metodología TRIZ : Los 39 parámetros de Altshuller

1	Peso de un objeto en movimiento	11	Tensión / Presión	21	Potencia	31	Efectos secundarios dañinos
2	Peso de un objeto sin movimiento	12	Forma	22	Desperdicio de energía	32	Manufacturabilidad
3	Longitud de un objeto en movimiento	13	Estabilidad de un objeto	23	Desperdicio de sustancia	33	Conveniencia de uso
4	Longitud de un objeto sin movimiento	14	Resistencia	24	Pérdida de información	34	Reparabilidad
5	Área de un objeto en movimiento	15	Durabilidad de un objeto en movimiento	25	Desperdicio de tiempo	35	Adaptabilidad
6	Área de un objeto sin movimiento	16	Durabilidad de un objeto sin movimiento	26	Cantidad de sustancia	36	Complejidad de un mecanismo
7	Volumen de un objeto en movimiento	17	Temperatura	27	Confiabilidad	37	Complejidad de control
8	Volumen de un objeto sin movimiento	18	Brillo	28	Precisión de mediciones	38	Nivel de automatización
9	Velocidad	19	Energía gastada por objeto en movimiento	29	Precisión de manufactura	39	Productividad
10	Fuerza	20	Energía gastada por objeto sin movimiento	30	Factores perjudiciales actuando en objeto		

VER DETALLE DE CADA PRINCIPIO EN: http://www.triz40.com/aff_Principles.htm

Herramientas de la metodología TRIZ : Los 40 principios inventivos

El uso de estos principios conocidos a nuevos problemas puede traer soluciones innovadoras a las contradicciones planteadas

1	Segmentación	11	Amortiguación anticipada	21	Velocidad	31	Porosidad
2	Separación/Extracción	12	Equipotencialidad	22	Conversión de efectos dañinos en beneficios	32	Cambio de color
3	Calidad local	13	Inversión	23	Feedback	33	Homogeneidad
4	Asimetría	14	Esferoidalidad	24	Intermediación	34	Restauración y recuperación de partes
5	Combinación	15	Dinamicidad	25	Autoservicio	35	Transformación de parámetros físico - químicos
6	Universalidad	16	Parcialidad o excesividad	26	Copia	36	Transición de fase
7	Anidación	17	Nueva dimensión	27	Relación de coste - vida útil	37	Expansión térmica
8	Contrapeso	18	Vibración mecánica	28	Sustitución mecánica	38	Fuerte oxidación
9	Reacción previa	19	Periodicidad de acciones	29	Uso de construcción neumática o hidráulica	39	Atmósfera inerte
10	Acción previa	20	Continuidad de acciones útiles	30	Películas flexibles o membranas delgadas	40	Composición de materiales

Herramientas de la metodología TRIZ : Matriz TRIZ o de contradicciones

La matriz TRIZ indica cuál de los 40 principios inventivos se han utilizado con mayor frecuencia para resolver un problema que implica una contradicción particular en base a los 39 parámetros de Altshuller.

Por ejemplo, necesitamos un objeto estático más largo que no llegue a resultar más pesado. Esto es una clara contradicción. El comportamiento de la mejora (improving feature) está marcado por "4: Length of stationary object" y el factor de empeoramiento (worsening feature) es "2: Weight of stationary object".

iiUtilicemos la matriz para descubrir posibles soluciones!!

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
: Weight of moving object	-	-	15 8 29 34	-	29 17 38 34	-	29 2 40 28	-	28 1538	8 10 18 37	10 36 37 40	10 14 35 40	1 35 19 39	18 40	5 34 31 35	-	6 29 4 38	19 1 32	35 12 34 31	-	12 36 18 31	62 34 19	5 35 3 31		10 35 20 28	3 26 18 31	13 1127	28 27 35 26	28 35 26 18	22 21 18 27	22 35 31 39	27 28 1 36	35 3 2 24	2 27 28 11	29 5 15 8	26 30 36 34	26 32	18 19
: Weight of stationary	-	-	-	10 1 29 35	-	35 30 13 2	-	5 35 14 2	-	8 10 19 35	13 29 10 18		26 39 1 40	28 2 10 27	-	2 27 19 6	28 19 32 22	19 32 35	-	18 19 28 1	15 19 18 22		58 1330	10 15 35	10 20 35 26	19 6 18 26	10 28 8 3	18 26 28	10 1 35 17	2 19 22 37	35 22 1 39	281 9	6 13 1 32	2 27 28 11	19 15 29		25 28 17 15	
Length of moving object	8 15 29 34	-	-	-	15 17 4	-	7 17 4 35	-	13 4 8	17 10 4	1 8 35	18 1029	1 8 15 34	8 35 29 34	19	-	10 15 19	32	8 35 24	-	1 35	7 2 35 39	4 29 23 10	1 24	15 2 29	29 35	10 14 29 40	28 32 4	10 28 29 37	1 15 17 24	17 15	1 29 17	15 29 35 4	1 28 10	14 15 1 16	1 19 26 24		
Length of stationary	-	35 28 40 29	-	-	-	17 7 10 40	-	35 8 2 14	-	28 10	1 14 35		39 37 35		-	1 10 35		3 25	-	-	128	6 28	10 28 24 35	24 26	30 29 14	-	15 29 28	32 28 3	232	1 18	-	15 17 27	2 25	3	1 35			-
i: Area of moving object	2 17 29 4	-	14 15 18 4	-	-	-	7 14 17 4	-	29 30 4 34	19 30 35 2	10 15 36 28			3 15	63	-	2 15	15 32 19 13	19 32	-	19 10 32 18	15 17 30 26	\rightarrow	30 26	\rightarrow	29 30 6 13		26 28 32 3	2 32	22 33 28 1	17 2 18 39	13 1 26 24	15 17 13 16	15 13 10 1	15 30	14 1 13	2 36 26 18	
i: Area of stationary	-	30 2 14 18	-	26 7 9 39	-	-	-	-	-	1 18 35 36	10 15 36 37	-	2 38		-	2 10 19 30	35 39	-	-	-	17 32	17 7 30	10 14 18 39	30 16	10 35 4 18	2 18 40 4	32 35 40 4	26 28 32 3	2 29 18 36	27 2 39 35	22 1 40	40 16	16 4	16	15 16	1 18 36	2 35 30 18	22
': Volume of moving object	2 26 29 40	-	17 435	-	17 417	-		-	29 4 38 34	15 35 36 37	6 35	1 15 29 4	28 10 1 39		6 35	-	34 39 10 18	213	35	-	35 6	7 15 13 16	36 39 34 10	2 22		29 30		25 26 28	25 28	22 21 27 35	17 2 40 1	29 1 40	15 13 30 12	10	15 29		29 26	
S: Volume of stationary	-	35 10 19 14	19 14	35.8	-	-	-	-	-	218	24 35	7 2 35	34 28 35 40	9 14	-	35 34 38	35.6	-	-	-	306	-	10 39 35 34	-	35 16 32 18	35 3	235	-	35 10 25	34 39 19 27	30 18 35 4	35	-	1	-	1 31	2 17	-
k Speed	2 28 13 38	-	13 14	-	29 30 34	-	7 29 34	-	-	13 28	6 18 38 40	35 15		83	3 19 35 5	-	28 30 36 2	10 13 19	8 15 35 38	-	19 35 38 2	14 20 19 35		13 26	-	10 19 29 38	$\overline{}$	28 32 1 24	10 28 32 25			35 13 8 1	32 28 13 12		15 10 26	10 28 4 34	3 34	
0: Force (Intensity)	81 37 18	18 13	17 19	28 10	19 10		15.9	2 36	13 28	15 19	18 21	10 35	35 10	35 10		 	35 10	-	19 17	1 16	19 35	14 15	835	-	10 37	14 29	3 35	35 10	28 29	1 35	133	15 37	1 28	151	15 17	26 35	36 37	
1: Stress or pressure	10 36	1 28 13 29	9 36 35 10	35 1	15 10 15	36 37 10 15	12 37 6 35	18 37 35 24	15 12 6 35	36 35	11	40 34 35 4	21 35 33	14 27 9 18	193	-	21 35 39	-	10 14 24	36 37	18 37 10 35	2 36	40 5 10 36	_	36 37 36	1836 1014	13 21 10 13	23 24 6 28	37 36 3 35	40 18 22 2	36 24 2 33	181	3 25	11	18 20 35	10 18 19 1	2.36	35 24
2: Shape	37 40 8 10	10 18 15 10	29 34	13 14	36 28 5 34	36 37	10 14 4	72	36 35 15	21 35 10	34 15	15 10	33 1	30 14	14 26	-	19 2 22 14	13 15	10 37 2 6	_	14 46	25 14	3 37 35 29		4 14 10	36 36 22	19 35 10 40	25 28 32	32 30	22 1	27 18 35 1	16 1 32	32 15	2 13	1 15	35 16 29	37 15 13	
3: Stability of the object	29 40 21 35		13 15	10 7 37	4 10 2 11	39	15 22 28 10	34 28	33 15	37 40 10 35	10 14 2 35	22 1	184	179	13 27		19 32 35 1	323	34 14 13 19	27 4	2 32 35	142	35 214		34 17 35 27	15 32	16	13	40 18	2 35 35 24	35 40	17 28 35 19	32 35		29 35 30		35 22	
4: Strength	239	1 40 40 26	1 28	15 14	13 3 34	9 40	19 39 10 15	35 40 9 14		21 16 10 18	103	184	13 17	15	10 35 27 3	35 23	32 30 10	27 16 35 19	19 35	29 18 35	27 31 10 26	39 6 35	30 40 35 28	$\overline{}$	29 3	35 29 10		3 27	3 27	30 18 18 35	27 39 15 35	113	30 32 40	10 16 27 11	34 2 15 3	22 26		35
	40 15 19 5	27 1	8 35 2 19	28 26	40 29 3 17	28	147	17 15	26 14 3 35	3 14 19 2	18 40 19 3	35 40 14 26	35 13 3		26	ļ -	40 19 35	2 19	10 28 6	30	35 28 19 10	35	31 40 28 27	-	28 10 20 10	27 3 35	11.2	16	3 27	37 1 22 15	22 2 21 39	10 32 27 1	25 2 12 27	3 29 10	32 1 35	25 28 10 4	100	
5: Durability of moving obj.	34 31	6 27	9	140	19	-	19 30	35 34	5	16	27	28 25	35 39 3	10	ļ.	ļ -	39 19 18	4 35	35 18	-	35 38	-	3 18 27 16	10	28 18 28 20	10 40 3 35	13 34 27	3 10 26	16 40	33 28 17 1	16 22	4 35 10		27	13	29 15		
6: Durability of non moving obj.	36 22	19 16 22 35	15 19	35 15 19	3 35	35 38	34 39	38 35 6	2 28	35 10	35 39	14 22	35 23 1 35	1030	19 13	19 18	36 40	32 30	19 15	-	16 2 14	21 17	18 38 21 36	10	10 16 35 28	31	6 40 19 35	24 32 19	-	40 33 22 33	22 22 35	26 27	26 27	1 4 10	2 18	2 17	6 35	26 2
7: Temperature	638	32	9 19 32	9	39 18 19 32		40 18	4	36 30	3 21 26 19	19 2	19 32	32	22 40	39	36 40	32 35	21 16	3 17	32 35	17 25	35 38 13 16	29 31	16	21 18	30 39	3 10	24	3 32	35 2 15 19	2 24	19 35	28 26	16 15 17	27	16	35 31 32 15	19 1
8: Illumination intensity	32	32	16	-	26 15 19	-	10	-	19	6	-		27 19 13		6 28 35	<u> </u>	19	2 15	19	1 15	32 6 19	16	35 24		26 17	34 23	- 19 21	32	0 02	135	32 39	28 26 28 26	19	13 16	19	13	35 38	10
9: Use of energy by moving	28 31	·	12 26	-	25	-	18	-	8 35	212	23 14 25	29	17 24		6 18	-	3 14	19	*	-	37 18	15 24	185	-		16 18	11 27	32	-	6 27	6	30	19 35	17 28	13 16			32 2
20: Use of energy by stationary	-	19 9 6 27	-	-	-	-	-	-	-	36 37	-	-	27 4 29 18	35	-	-	-	19 2 35 32	-	*	-	-	28 27 18 31	-	-	3 35 31	10 36 23	-	-	10 2 22 37	19 22 18	14	-	-	-	-	19 35 16 25	-
1: Power	8 36 38 31	19 26 17 27	1 10 35 37	-	19 38	13 38	35 6 38	30 6 25	2	36 35	22 10 35	29 14 2 40	15 31	28	19 35 10 38	16	2 14 17 25	16 6 19	16 6 19 37	-	•	10 35 38	28 27 18 38	10 19	106	4 34 19	26 31	32 15 2	32 2	19 22 31 2	18	26 10 34	10	35 2 10 34	19 17 34	30 34	16	28 2 17
22: Loss of Energy	15 6 19 28	19 6 18 9	7 2 6 13	6 38 7	15 26 17 30	17 7 30 18	7 18 23	7	16 35 38	36 38	-	-	14 2 39 6	26	-	-	19 38 7	1 13 32 15	-	-	3 38	•	35 27 2 37	19 10	10 18 32 7	7 18 25	11 10 35	32	-	21 22 35 2	21 35 2 22	-	35 32 1		-	7 23	35 3 15 23	2
23: Loss of substance	35 6 23 40	35 6 22 32	14 29 10 39	10 28 24	35 2 10 31	10 18 39 31		3 39 18 31	10 13 28 38	14 15 18 40	3 36 37 10	29 35 3 5	2 14 30 40	35 28 31 40		27 16 18 38	21 36 39 31	1 6 13	35 18 24 5	28 27 12 31	28 27 18 38	35 27 2 31	*	-	15 18 35 10	63 1024	10 29 39 35	16 34 31 28	35 10 24 31	33 22 30 40	10 1 34 29	15 34 33	32 28 2 24		15 10 2	35 10 28 24	35 18 10 13	
24: Loss of Information	10 24 35	10 35 5	1 26	26	30 26	30 16	-	2 22	26 32	-	-	-	-	-	10	10	-	19	-	-	10 19	19 10	-	•	24 26 28 32	24 28 35	10 28 23	-	-	22 10 1	10 21 22	32	27 22	-	-	-	35 33	35
25: Loss of Time	10 20 37 35	10 20 26 5	15 2 29	30 24 14 5	26 4 5 16	10 35 17 4	25 34 10	35 16 32 18	-	10 37 36 5	37 36 4	4 10 34 17	35 3 22 5		20 10 28 18			1 19 26 17	35 38 19 18	1	35 20 10 6	105 1832		24 26 28 32	-	35 38 18 16	10 30 4	24 34 28 32	24 26 28 18	35 18 34	35 22 18 39	35 28 34 4	4 28 10 34	32 1 10	35 28	6 29	18 28 32 10	
26: Quantity of substance/the	35 6 18 31	27 26 18 35		-	15 14 29	2 18 40 4	15 20 29	-	35 29 34 28	35 14 3	10 36	35 14	15 2 17 40	14 35 34 10		3 35	3 17 39	-	34 29 16 18	3 35 31	35	7 18 25	63 1024	24 28 35	35 38 18 16		183 2840	13 2 28	33 30	35 33 29 31	3 35 40 39	29 1 35 27	35 29 25 10	2 32 10 25	15 3 29	3 13 27 10	3 27 29 18	8 35
27: Reliability	3 8 10 40	3 10 8 28	15 9 14 4	15 29 28 11		32 35 40 4			21 35 11 28	828 103	10 24 35 19	35 1 16 11	-	11 28	_	34 27 6 40	3 35 10	11 32 13	21 11 27 19	_	21 11 26 31	10 11 35		10 28	_	21 28 40 3		32 3 11 23	11 32 1	27 35 2 40	35 2 40 26	-	27 17 40	111	13 35 8 24		_	_
28: Measurement accuracy	32 35 26 28	28 35	28 26 5 16			26 28 32 3	32 13	-	28 13 32 24	32 2		6 28 32	32 35 13	28 6 32				6 1 32	3 6 32	-		26 32 27	10 16 31 28	-	24 34 28 32	2 6 32	5 11 1 23		-	28 24 22 26		6 35 25 18	1 13	1 32	13 35	27 35		28 2
29: Manufacturing precision	28 32 13 18	28 35 27 9	10 28	232	28 33 29 32	2 29 18 36	32 23 2	25 10 35	10 28 32	28 19 34 36	3 35	32 30 40		_	3 27 40	-	19 26	3 32	32.2	-	32.2	13 32	35 31 10 24	-	32 26 28 18	32 30	11 32	-	-	26 28 10 36	4 17 34 26	-	132	25 10	-	26 2 18	-	26 2
60: Object-affected harmful	22 21	2 22	17.1	1 18	221	27 2	22 23	34 39	21 22	13 35 39 18	22 2 37	22 1	35 24		22 15		22 33 35 2	1 19	1 24	10 2 22 37	19 22 31 2	21 22	33 22	22 10	35 18	35 33	27 24 2 40	28 33 23 26	26 28	10 36	34 20	24 35	2 25	35 10 2	35 11 22 31	22 19	22 19 29 40	33 3
51: Object-generated harmful	27 39 19 22	35 22	39 4 17 15	-	33 28 17 2	39 35 22 1		19 27 30 18		35 28	2 33	3 35 35 1	30 18 35 40	15 35		21 39	22 35	32 13 19 24	6 27 2 35	19 22	2 35	35 2 21 35		10 21		29 31 3 24	24 2	3 33	10 18 4 17	_		-	28 39	-	- 22 31	191	2 21	2
32: Ease of manufacture	15 39 28 29	1 27	16 22 1 29	15 17	18 39 13 1	40 16 40	40 13 29	35 4 35	3 23 35 13	1 40 35 12	27 18 35 19	1 28	11 13		27 1	16 22 35 16	27 26	39 32 28 24	6 28 26	18	18 27 1	2 22 19 35		29 32 24		39 1 35 23	40 39	26 1 35	34 26	24 2	_	_	25	35 1	2 13	31 27 26		8 28
33: Ease of operation	15 16 25 2		13 17 1 17	27	26 12 1 17	18 16	1 40	418	81 1813	28 13	1 37		1 32 35				18 26 27	27 1 13 17	27 1 1 13		12 24 35 34	2 19	28 32			1 24 12 35		12 18 25 13		2 25		25	13 16	12 26	15 15 34	1 32 26	11 1	1 34
M: Fase of regalr	13 15 2 27	1 25	13 12 1 28	3 18	13 16 15 13	15 39 16 25	35 15 25 2	39 31	34 34 9	35 1 11	12	29 28 1 13	30 235	3 28	8 25	25	13 4 10	124	24 15 1	_	2 10 15 10	13 15 1	2 24	27 22	10 34 32 1	2 28	8 40 11 10	234 102	35 23 25 10	28 39 35 10	_	12	1 12	1 32	1 16 7 1	12 17 35 1	H	12 3 34 3
	35 11 1 6	35 11 19 15	10 25 35 1	31 1 35	32 35 30	15 16	35 11 15 35	-	35 10	10 15 17	13 35 16	2 4 15 37	35 30	2 9 35 3	28 27 13 1	2 16	27 2	13 6 22	28 16 19 35	-	32 2 19 1	32 19 18 15	34 27 15 10	-	10 25 35 28	10 25 3 35	1 16 35 13	13 35 5	\vdash	2 16 35 11	_	11 10 1 13	26 15 15 34	1 16	4 16	13 11 15 29	H	7 13 27 34
SS: Adaptability or versatility	15 8 26 30	29 16	29 2	16	29 7	636	29 34 26	1 16	14	20 26 16	19 1	18	14	32 6		H	3 35	26 1 24 17	29 13 27 2	-	29	1 10 35	2 13	-	6 29	15	8 24	110	26 24	32 31 22 19	191	31 27 26	1 16	74	29 15	37 28	1 15 10	35
66: Device complexity	34 36 27 26	35 39 6 13	26 24	26	13 16	2.39	6 29.1	2 18	28	30 28	35 36	28 15 27 13		28	28 15	25.34	13	13	29 28 35 38	19.35	30 34 18 1	13.2	28 29	35 33	18.28	27 10	1	10 34	32	29 40	2.21	1 13	26 24		28 37	15 10	37 28	
7: Difficulty of detecting	28 13	281	26 24	26	18 17 17 14	30 16		26 31	16 35	40 19	37 32 13 35	1 39	39 30	15 28	39 25		35 16 26 2	26 832	2 32	16	16 10	15 19 23 28	10 24	27 22	329	29 18 35 13	288	20 24 32 28 28 26	- 20.05	29 28		11 29	\Box			37 28	34 27	1
8: Extent of automation		26 26 35 10		23	17 14	I - I	35 13 16	ı . I	28 10	Z 35	13 35	15 32	181	125 13	0.9	1 -	19	19	13		28 2	23 26	18.5	30 33	24 28 35 30	35 13		10 34	18 23	2 33	2	1 26 13	1 12 34 3	1 35	27 4 1 35	15 24	25	

Herramientas de la metodología TRIZ : ¿Cómo navegar a través de la matriz TRIZ?

MATRIZ DE CONTRADICCIONES

La matriz TRIZ (39x39) se fundamenta, como se observa en la diapositiva anterior, en la representación a través de una tabla de todas y cada una de las contradicciones posibles en base al cruce entre sí de los 39 parámetros de Altshuller.

En el recorte de la matriz TRIZ adjunto en la presente diapositiva, se puede apreciar como la intersección de cada fila y columna en contradicción de la matriz es una referencia a alguno de los 40 principios inventivos para la eliminación de las contradicciones

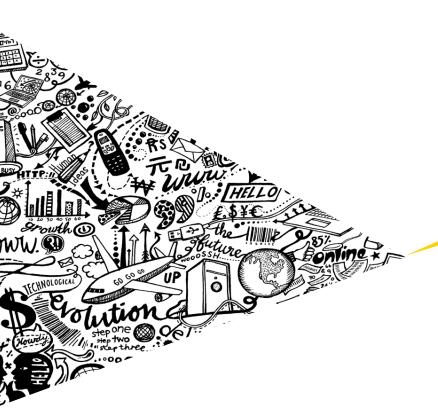
느	ii II						
			1	2	3	4	5
		1: Weight of moving object	*	-	15 8 29 34	-	29 17 38 34
_		2: Weight of stationary	-	*	-	10 1 29 35	-
		3: Length of moving object	8 15 29 34	-	*	-	15 17 4
_		4: Length of stationary	-	35 28 40 29	-	*	-
		5: Area of moving object	2 17 29 4	-	14 15 18 4	-	*

Experiencias de aplicación de la metodología TRIZ

A pesar de que Genrikh Altshuller fue encarcelado tras exponer a Stalin numerosas ideas, con base a sus estudios, para mejorar el por aquel entonces sistema soviético; su método no fue capaz de resurgir y emerger en Occidente hasta la caída de la antigua Unión Soviética.

Desde su resurrección, el uso de la metodología TRIZ se ha expandido con éxito a otras áreas diferentes respecto a las tradicionales <u>áreas industriales</u>, tales como la <u>investigación biomédica</u>, la <u>medicina</u>, la <u>programación informática</u> o la <u>gestión empresarial</u>, entre otras.

Hoy en día muchas de las 500 organizaciones empresariales de mayor riqueza -Fortune 500- utilizan con éxito la metodología TRIZ, como por ejemplo:



La aplicación de TRIZ se está extendiendo a pasos agigantados en el campo empresarial a través de caminos paralelos siendo, por ejemplo, cada vez más común en procesos Six Sigma, en sistemas de gestión y de administración de riesgos de proyectos y en iniciativas de innovación organizacional.

Ernst & Young

Assurance | Tax | Transactions | Advisory

www.ey.com/es

© 2013 Ernst & Young SL

All Rights Reserved.