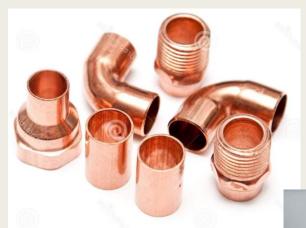
TECNOLOGÍA

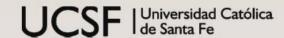
Investigación y Desarrollo

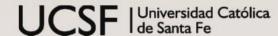

METALES NO FERROSOS

Metales NO ferrosos

No contienen Fe, de propiedades varias y aplicaciones infinitas. Generalmente presentan una mayor resistencia a la oxidación y maleabilidad.

- Cobre
- Estaño
- Bronce
- Latón
- Aluminio
- Magnesio
- Titanio
- Oro
- Plata



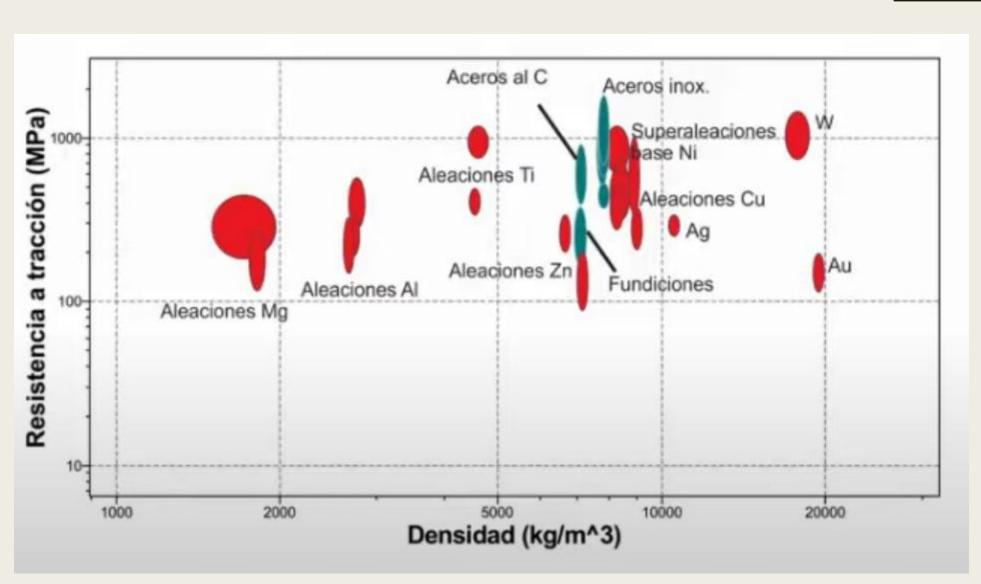

COBRE

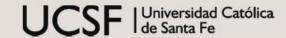
PROPIEDADES

>Junto con la PLATA y el ORO son los elementos que mejor conducen la electricidad.

En 1913 la <u>CEI</u> adoptó la conductividad eléctrica del cobre como la referencia estándar (100%)

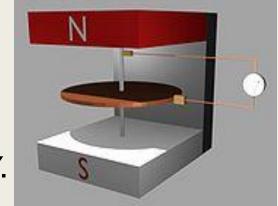
- >Uno de los primeros metales descubierto.
- >Tercer metal mas utilizado en el mundo.
- ~ 16 millones de tn (anuales)
- >Primer metal usado y su aleación con el estaño (bronce):
 - -Edad del Cobre
 - -Edad del Bronce

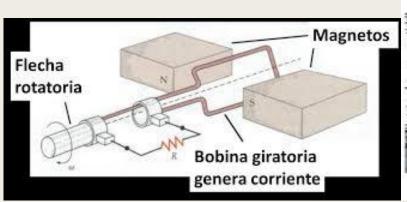

COBRE

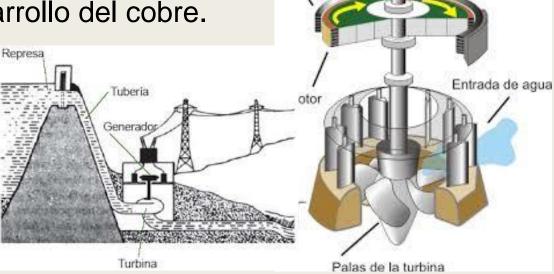

PROPIEDADES

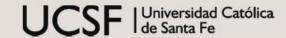
- > Propiedades físicas:
 - Densidad: 8.9
 - Punto de fusión: 1084ºC
- > Propiedades mecánicas:
 - Resistencia a la tracción:
 - -220 MPa (recocido) 400 MPa(deformado)
 - -Límite de elasticidad:
 - -50 MPa(recocido) 200 MPa (deformado)
 - -Difícil mecanizado y alta ductilidad

ALUMINIO




COBRE


UTILIZACIÓN EN LA EDAD CONTEMPORÁNEA


Michael Faraday (1831) descubrió que: "Un conductor eléctrico moviéndose Perpendicularmente a un campo magnético generaba una diferencia de potencial" Primer generador eléctrico, el DISCO DE FARADAY.

El desarrollo de generadores eléctricos y su empleo en electricidad potenció el desarrollo del cobre.

ALEACIONES

COBRE

(Principales aleantes son: Zn, Sn, Al, Ni, Be, Si, Cd, Cr)

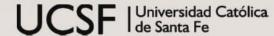
ALEACIONES de COBRE: Clasificación

ALEACIONES DE COBRE

LATONES

Zinc como aleante principal <50%Zn

BRONCES


Aleaciones de cobre donde el aleante principal no es el Zn

ALFA < 36%Zn ALFA + BETA 36%<%Zn<46%

BETA

COMUNES Estaño como aleante principal ESPECIALES
Al aluminio
Al berilio
Al Silicio

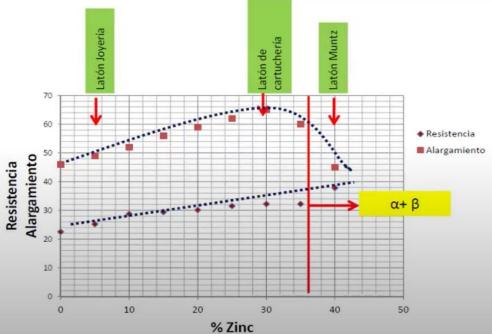
ALEADOS Cupro-niquel

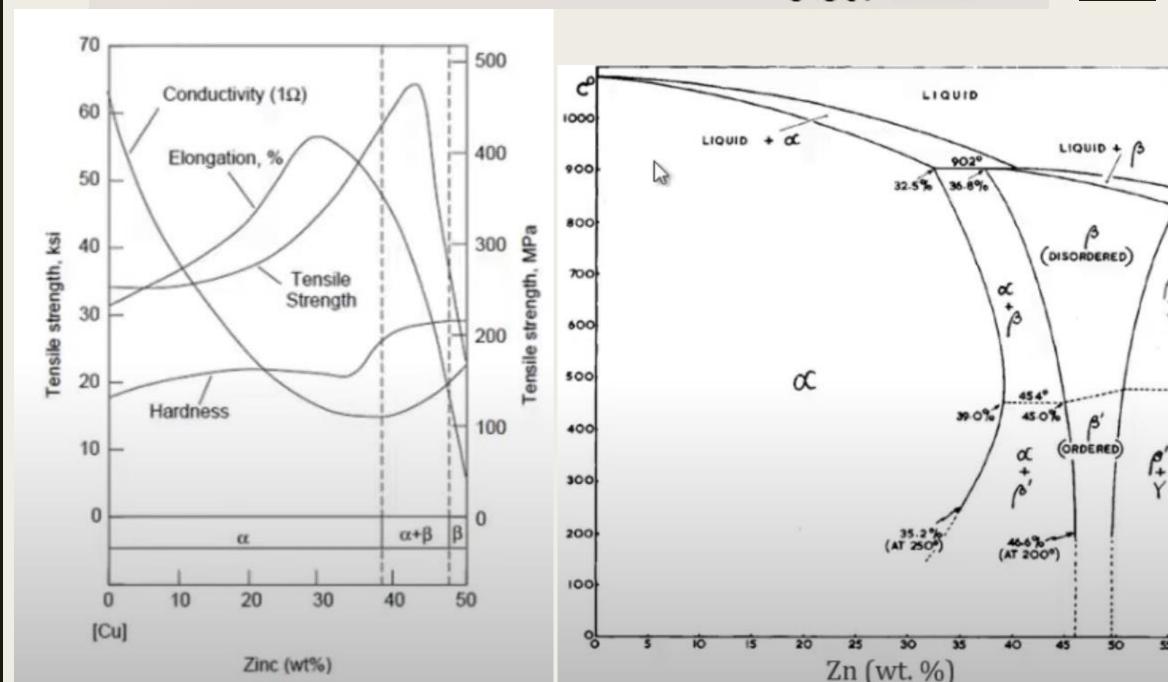
ALEACIONES

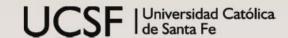
(Principales aleantes son: Zn, Sn, Al, Ni, Be, Si, Cd, Cr)

COBRE

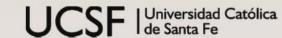
ELEMENTO	EFECTO		
Hierro	Aumente la resistencia mecánica		
Aluminio	Aumenta la resistencia mecánica		
	Aumenta la resistencia a la corrosión		
	Aumenta la resistencia al desgaste		
	Aumenta la dureza		
Disminuye la ductilidad			
Manganeso Aumenta la resistencia a la tracción Aumenta la durezalnhibe el crecimiento de grano			
	Disminuye la ductilidad		
Cromo	Aumenta las propiedades mecánicas		
Telurio	Aumenta las propiedades mecánicas		
Berilio	Aumenta la dureza		
Fósforo	Aumenta la resistencia a la tracciónAumenta el límite de fatigaDisminuye la		
	conductividad		


• C1xxxx	(cobre>99.3) y cobre alto (99.3>Cu>96)
• C2xxxx	aleado con Zn (latónes)
• C3xxxx	aleado con Zn y Pb (latónes de plomo)
• C4xxxx	aleado con Zn y Sn Latónes de estaño)
• C5xxxx	aleado con Sn (bronces fosforados)
• C6xxxx	aleado con Al (bronce al alumino)
	aleado con Si (bronce al silicio)
• C7xxxx	aleado con Ni y Ni-Zn (plata de niquel)




LATÓN (Cu-Zn)

- >Se obtiene mediante la fusión en un crisol o cubilote
- ➤ Porcentaje de Zn inferior al 50%. (El % influye en las caract. mecánicas, capacidad fundir, forjar y mecanizar)
 - -Algunos latones son maleables únicamente en frío
 - -Otros exclusivamente en caliente
 - -Y algunos no lo son a ninguna temperatura.



COBRE

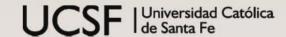
LATÓN (Cu-Zn)

- ➤En frío, se pueden deformar y producir láminas, varillas o alambres.
- ➤ Se vuelven quebradizos a temperaturas próxima al punto de fusión.
- Es más duro que el cobre, pero mas fácil de mecanizar, grabar y fundir.
- >Es resistente a la oxidación.
- ➤El aporte de plomo mejora la maquinabilidad porque facilita la fragmentación de las virutas.

COBRE

LATÓN (Cu-Zn) - Campos de aplicación:

- ➤ Bisutería (por su color amarillo brillante, con parecido al oro)
- > Armamento
- ➤ Calderería
- > Fabricación de alambres, tubos de condensadores y terminales eléctricos.
- Elementos para barcos y equipos pesqueros (no es atacado por el agua salada)
- Envases para compuestos inflamables (no produce chispas por impacto mecánico)
- ➤ Cepillos de limpieza de metales
- ▶ Pararrayos



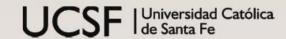
COBRE

BRONCES (Cu-Sn)

- ➤ Aleaciones en las que predominan el cobre y el estaño (entre el 2 y 22% de Sn) y pueden contener además aluminio, **berilio**, cromo o silicio
- ➤ Color amarillento
- ➤ Piezas fundidas de mejor calidad, pero más caras y difíciles de mecanizar que el latón.

COBRE

BRONCES (Cu-Sn) - Campos de aplicación:

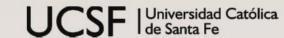

- > Aleaciones conductoras del calor.
- Fabricación de válvulas, tuberías y uniones de fontanería.
- > Algunas aleaciones se usan en uniones deslizantes, como cojinetes o discos de fricción.
- >Otras, donde se requiere alta resistencia a la corrosión: rodetes de

turbinas o válvulas de bombas.

COBRE

ALPACA (Cu-Ni-Zn)

(aprox: 50-70% de cobre, 13-25% de níquel, y 13-25% de cinc)

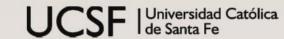

Al variar la proporción pasa de máxima dureza a mínima conductividad

Con pequeñas cantidades de aluminio o hierro, constituyen aleaciones

de gran resistencia a la corrosión marina

Campos de aplicación:

- ➤ Materiales de telecomunicaciones y electricidad: conectores
- ➤Instrumentos y accesorios de fontanería: grifos, abrazaderas, muelles.
- ➤EI MONEL (Cu=28-30%, Ni=66-67%, Fe=3-3,5%) tiene gran resistencia a agentes corrosivos a las altas temperaturas


COBRE

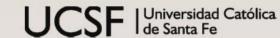
OTRAS ALEACIONES

Cobre-cadmio (Cu-Cd): con pequeño porcentaje de cadmio se tienen mayor resistencia que el cobre puro. Se utilizan en líneas eléctricas aéreas sometidas a fuertes solicitaciones mecánicas.

Cobre-cromo (Cu-Cr): tienen una alta conductividad eléctrica y térmica. Se utilizan en electrodos de soldadura por resistencia y contactores de potencia

Cobre-hierro-fósforo (Cu-Fe-P): buena conductividad eléctrica y buenas propiedades térmicas y mecánicas. Estas aleaciones se utilizan en circuitos integrados porque tienen buenas propiedades eléctricas y mecánicas a altas temperaturas.

COBRE


OTRAS ALEACIONES

Cobre-aluminio (Cu-Al): conocidas como bronces al aluminio y duraluminio, contienen al menos un 10% de aluminio. Tienen buenas propiedades mecánicas y resistencia a la corrosión.

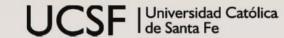
Cobre-berilio (Cu-Be): buenas propiedades mecánicas y resistencia a la corrosión. Se utiliza para fabricar muelles, moldes para plásticos, electrodos para soldar por resistencia y herramientas antillama.

Cobre-plata (Cu-Ag): alta dureza a temperaturas de hasta 226 °C, manteniendo la conductividad eléctrica del cobre puro.

Constantán (Cu₅₅Ni₄₅) (55% de Cu y 45% de Ni): resistividad eléctrica casi constante en un amplio rango de temperaturas. Se emplea en la fabricación de termopares, galgas extensiométricas y monedas.

COBRE

APLICACIONES


Electricidad y telecomunicaciones

- Fabricación de cables eléctricos: metal no precioso con mejor conductividad eléctrica
- ➤ Se emplean conductores en generadores, motores y transformadores NOTA: Principal alternativa: aluminio.
- ➤ La mayoría de los cables telefónicos

NOTA: Principales alternativas: fibra óptica y sistemas inalámbricos

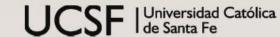
Medios de transporte

- ➤ Componentes de coches y camiones: radiadores, frenos y cojinetes
- ➤ Componentes de trenes
- Cascos de los barcos (aleaciones de Cu-Ni): reducen la adherencia de elementos marinos.

COBRE

APLICACIONES

Construcción y ornamentación


➤ Redes de transporte de agua: por su resistencia a la corrosión y sus propiedades anti-bacterianas

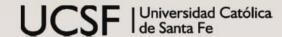
Como elementos arquitectónicos y revestimientos en tejados, fachadas, puertas y ventanas

- ➤ Picaportes de las puertas.
- >Estatuas y campanas

Cobre no metálico

- ➤El sulfato de cobre se emplea como abono y pesticida en agricultura, alguicida en la depuración del agua.
- ➤Un pigmento llamado cardenillo (acetatos de cobre) es muy utilizado en pintura: proporciona tonos verdosos o azulados.

COBRE

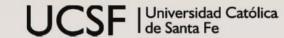

PRODUCTOS DEL COBRE

Fundición: blister

- Cobre con una pureza de mas de 98%, utilizado como materia prima para elaborar principalmente los cátodos y ánodos de cobre.
- ➤Los ánodos de cobre, con 99,6% de pureza, se utilizan en el proceso de refinación electrolítica que permite obtener un cobre con 99,99% de pureza.
- ➤ La dimensiones de un ánodo son: 100x125x5 cm y pesa ~350 kg

Alambrón

- >Es un producto resultante de la transformación en la colada continua
- ➤El alambrón se comercializa en bobinas de 5 tn, Øe=1,78m/Øi=1,15m y altura 0,9m
- ➤ Se utiliza para la fabricación de cables eléctricos de alta calidad de 0,15/0,20 mm


COBRE

Trefilado

- Estiramiento mecánico que se ejerce a partir de alambrón de 6 u 8mm de diámetro para producir cables eléctricos flexibles con la sección requerida
- ➤Un cable eléctrico se compone de varios hilos que mediante un proceso de extrusión se le aplica el aislamiento exterior con un compuesto plástico de PVC o polietileno
- ➤ Se formanbobinas que se cortan a las longitudes requeridas

Tubos

- ➤Se funde en horno una mezcla de cobre refinado y de chatarra de calidad controlada y se obtienen lingotes cilíndricos, de 300mm de diámetro y 8m de largo y que pesan ~5tn
- ➤ Luego se fabrican de tubos sin costura por una serie de deformaciones plásticas: Corte / Calentamiento / Extrusión / Laminación / Trefilado / Recocido / Control / Embalaje
- Muy utilizado en fontanería y sistemas mecánicos para el transporte de líquidos o gases

COBRE

Fundición de piezas

- ➤El cobre puro absorbe oxígeno a altas temperaturas formando burbujas y, al enfriarse se crean gran cantidad de minúsculos poros en la superficie de las piezas.
- ➤ Sus aleaciones si permiten fabricar piezas por moldeo o por centrifugado.

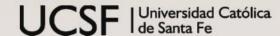
Forjado

- ➤ Se parte de una barra cortada de modo que tenga el volumen exacto de la pieza en el caso de la matriz cerrada, o añadiéndole un excedente para crear una rebaba en caso de matriz abierta.
- ➤El cobre y sus aleaciones reúnen muy buenas condiciones para el forjado, permitiendo el diseño de piezas sumamente complejas gracias a la gran ductilidad del material y la escasa resistencia a la deformación que opone.

Calderería

Gracias a la excelente conductividad térmica que tiene la chapa de cobre se utiliza para fabricar alambiques, calderas, serpentines, cubiertas, etc.

COBRE


Soldadura

- ➤ Soldadura blanda: se realiza a unos 200°C y se utiliza para la unión de los componentes de circuitos impresos y electrónicos, se utilizan soldadores eléctricos y el material de aporte es una aleación de estaño y plomo.
- ➤ Soldadura fuerte: se realiza con sopletes de gas para fundir el material soldante. Se utiliza como aglutinante el cobre o la plata. Se emplea para calefacción y tuberías de gas

Estampado

- Las chapas de cobre y sus aleaciones reúnen condiciones muy buenas para realizar en ellas todo tipo de grabados.
- ➤El estampado de los metales se realiza por presión o impacto, donde la chapa se adapta a la forma del molde.
- ➤La más conocidas es el estampado de las caras de las monedas en el proceso de acuñado de las mismas.

ALUMINIO

PROPIEDADES

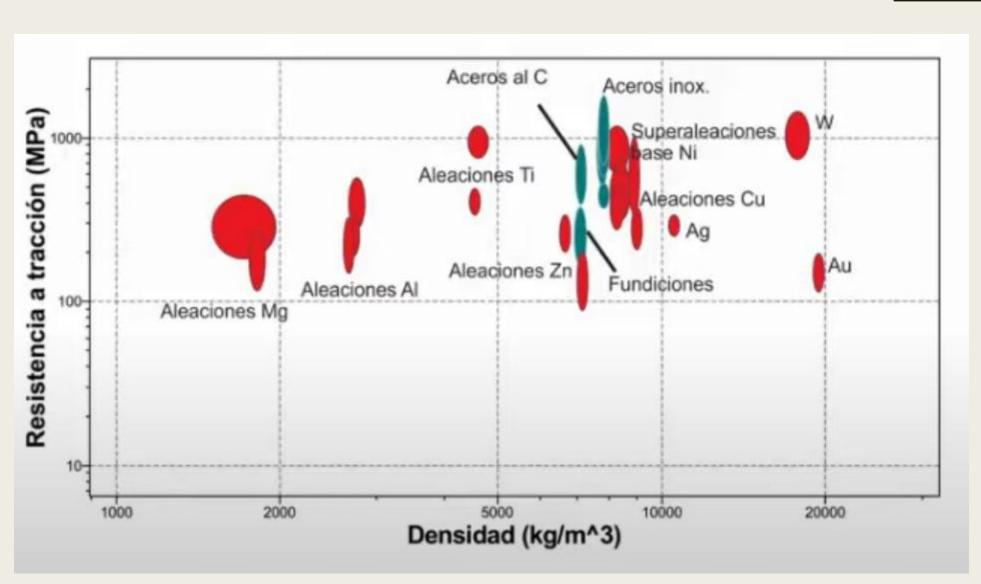
Resistencia a la corrosión

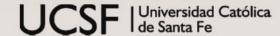
Elevada conductividad eléctrica y térmica

Baja densidad (1/3 la del acero)

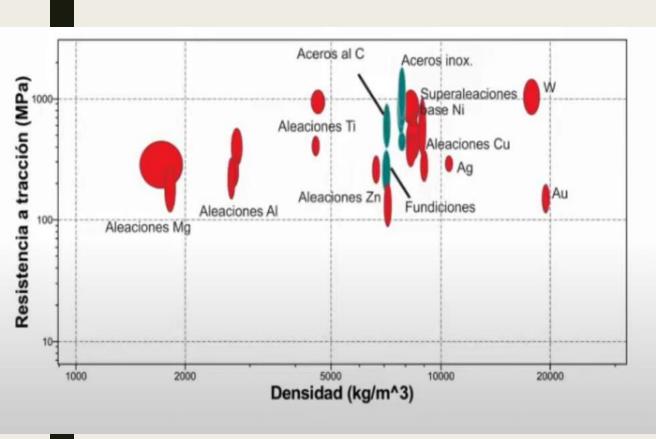
Elevada resistencia (en relación al peso)

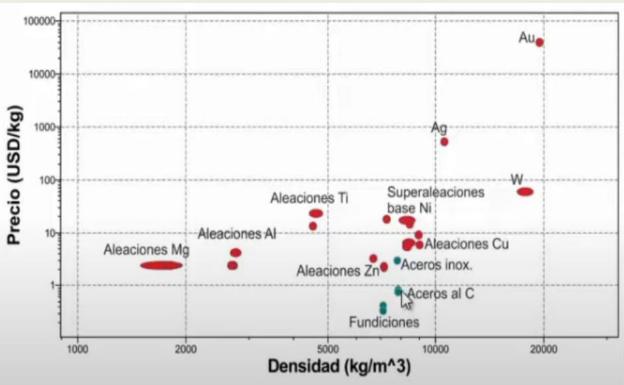
Facilidad de conformación

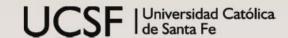

Material sustentable


Buena reflectividad - No tóxico

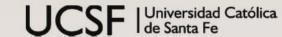
Costo moderado (2-3 veces el del acero)




ALUMINIO



ALUMINIO



ALUMINIO

PROPIEDADES

	Densidad (12.621-32)		Resistencia a la tensión	Resistencia específica	Costo por libra
Metal	g/cm³	(lb/plg ³)	(psi)	(plg)	(\$)
Aluminio	2.70	(0.097)	83,000	8.6×10^{5}	0.60,
Berilio	1.85	(0.067)	55,000	8.2×10^{5}	300.00
Cobre	8.93	(0.322)	150,000	4.7×10^{5}	1.10
Plomo	11.36	(0.410)	10,000	0.2×10^{5}	0.35
Magnesio	1.74	(0.063)	55,000	8.7×10^{s}	1.40
Níquel	8.90	(0.321)	180,000	5.6×10^{5}	4.10
Titanio	4.51	(0.163)	160,000	9.8×10^{5}	5.50
Tungsteno	19.25	(0.695)	150,000	2.2×10^{5}	10.00
Zinc	7.13	(0.257)	75,000	2.9×10^{5}	0.55
Hierro	7.87	(0.284)	200,000	7.0×10^{s}	0.10

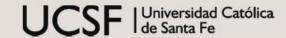
ALUMINIO

CLASIFICACIÓN DE LOS ALUMINIOS

1XXX Aluminio de pureza mínima de 99%

2XXX Aleaciones de aluminio y cobre

3XXX Aleaciones de aluminio y manganeso

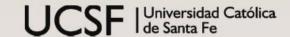

4XXX Aleaciones de aluminio y silicio

5XXX Aleaciones de aluminio y magnesio

6XXX Aleaciones de aluminio, magnesio y silicio

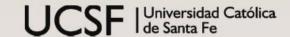
7XXX Aleaciones de aluminio, zinc y magnesio

8XXX Otras aleaciones

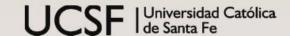


ALUMINIO

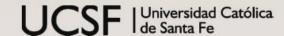
F Tal como se fabricó (trabajo en caliente, forja, fundición, etcétera).


GRADOS DE TEMPLE

- O Recocido (en el estado más blando posible).
- H Trabajado en frío
 - H1x—trabajado en frío solamente (la x se refiere a la cantidad de trabajo en frío y de endurecimiento).
 - H12—trabajo en frío que proporciona una resistencia a la tensión intermedia entre O y H14.
 - H14—trabajo en frío que aporta una resistencia a la tensión intermedia entre O y H18.
 - H16—trabajo en frío que proporciona una resistencia a la tensión intermedia entre H14 y H18.
 - H18—trabajo en frío que resulta en una reducción de aproximadamente 75%.
 - H19—trabajo en frío que proporciona una resistencia a la tensión superior a los 2000 psi de la obtenida mediante el H18.
 - H2x —trabajo en frío y parcialmente recocida.
 - H3x—trabajado en frío y estabilizado a una temperatura baja, para evitar endurecimiento por envejecimiento de la estructura.
- W Tratada por solución
- T Endurecida por envejecimiento
 - T1—enfriada desde la temperatura de fabricación y envejecida naturalmente.
 - T2—enfriada desde la temperatura de fabricación, trabajada en frío y envejecida naturalmente.
 - T3-tratada por solución, trabajada en frío y envejecida naturalmente.
 - T4—tratada por solución y envejecida naturalmente.
 - T5—enfriada desde la temperatura de fabricación y envejecida artificialmente.
 - T6—tratada por solución y envejecida artificialmenete.
 - T7—tratada por solución, estabilizada por sobreenvejecimiento.
 - T8—tratada por solución, trabajada en frío y envejecida artificialmente.
 - T9—tratada por solución, envejecida artificialmente y trabajada en frío.
 - T10—enfriada desde la temperatura de fabricación, trabajada en frío y artificialmente envejecida.


ALEACIONES
DE ALUMINIO
MAS
UTILIZADAS
(Colables)

TIPO DE ALEACION		SAE 329 ALCOA 319	SAE 332 ALCOA F 132	SAE 306 ALCOA 380
Composición química (en %)	AI Mg SI Cu Mn Fe Zn Ni Ti Otros (total)	Resto 0,10-0,50 5,50-6,50 3,00-4,00 0,80 máx. 1,20 máx. 1,00 máx. 0,50 máx. 0,25 máx.	Resto 0,5 -1,50 8,50-10,50 2,00-4,00 0,50 máx. 1,20 máx. 1,00 máx. 0,50 máx. 0,50 máx.	Resto 0,10 máx. 7,50-9,50 3,00-4,00 0,50 máx. 1,30 máx. 3,00 máx. 0,50 máx.
TI	PO DE PROCESO	Molde de arena y coquilla	Coquilla	A presión
Propiedades mecánicas típicas	Sin tratamiento. Resist, a la trac. Límite 0,2% Alarg, de rotura	18 kg/mm² 12 kg/mm² 1 %	No se usa sin tratamiento	33 kg/mm² 16 kg/mm² 3,5 %
	Con tratam, tér- mico más utili- zado. Solubilizar a Durante Enfriamiento en Precipitar a Durante Resist. a la trac. Límite 0,2% Alarg. de rotura	T-6 501-507°C 8 a 12 hs Agua a 66-100°C 152-157°C 2 a 5 hs. 25 kg/mm² 17 kg/mm² 2 %	T-5 204°C 7 a 9 hs 25 kg/mm² 19 kg/mm²	No se usa con tratamiento térmico
Caracte ciones p	rísticas y aplica- principales.	Aleación de uso general, en pie- zas coladas por gravedad.	Pistones para motores a explo- sión.	Aleación de us general, en pie zas coladas a pre sión.


ALEACIONES
DE ALUMINIO
MAS
UTILIZADAS
(Deformables con
baja resistencia
mecánica)

TIP	O DE ALEACION	SAE 3003	SAE 6063	SAE 5457
Composición química (en %)	AI Mg Si Fe Mn Cu Zn Cr Ti Otros (total)	Resto 0,60 máx. 0,70 1,00-1,50 0,20 máx. 0,10 máx.	Resto 0,45-0,90 0,20-0,60 0,35 máx. 0,10 0,10 máx. 0,10 máx. 0,10 máx. 0,10 máx. 0,15 máx.	Resto 0,80-1,20 0,08 máx. 0,10 máx. 0,15-0,45 0,20 máx.
icas	Con recocido Resist. a la tracc. Límite 0,2 % Alarg. de rotura	11kg/mm² 4 kg/mm² 40 %	9 kg/mm² 5 kg/mm² 35 %	13 kg/mm² 5 kg/mm² 25 %
Propiedades mecánicas típicas	Con endurecimiento mecánico Resist. a la tracción Límite 0,2 % Alarg. de rotura	H-14 16 kg/mm² 15 kg/mm² 16 %	No se usa	H-34 18 kg/mm² 16 kg/mm² 8 %
	Con tratamiento térmico Precipitar a Durante Resist. a la tracción Límite 0,2 % Alarg. de rotura	No se usa	T-5 232°C 1 a 2 hs 19 kg/mm² 15 kg/mm² 12 %	No se usa
	ncterísticas generales licaciones principales	Propiedades y usos semejantes al aluminio puro comercial. Mayor resistencia mecánica, Menor resistencia a la corrosión.	Alta resistencia a la corrosión. Buen comporta- miento al anodi- zado. Perfiles ex- trudados, anodi- zados para uso estructural y de- corativo.	Alta resistencia a la corrosión. Buen comporta- miento al anodi- zado. Aplicable en forma de cha- pas y perfiles la- minados, con fi- nes decorativos.

ALEACIONES
DE ALUMINIO
MAS
UTILIZADAS
(Deformables con
alta resistencia
mecánica)

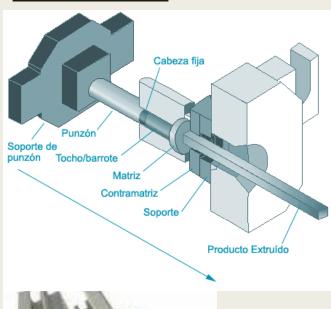
TIP	O DE ALEACION	SAE 2014	SAE 2024	SAE 7075
Composición química (en %)	Al Mg Si Fe Mn Cu Zn Cr Ni Ti Ca Otros (total)	Resto 0,20-0,80 0,50-1,20 1,00 máx. 0,40-1,20 3,90-5,00 0,25 máx. 0,10 máx. 	Resto 1,20-1,80 0,50 máx. 0,50 máx. 0,30-0,90 3,80-4,90 0,25 máx. 0,10 máx.	Resto 2,10-2,90 0,50 máx. 0,70 máx. 0,30 máx. 1,20-2,00 5,10-6,10 0,18-0,40 0,20 máx.
Propiedades mecánicas típicas	Con recocido Resist, a la tracción Límite 0,2 % Alarg, de rotura	19 kg/mm² 10 kg/mm² - 20 %	19 kg/mm² 8 kg/mm² 20 %	23 kg/mm² 11 kg/mm² 16 %
	Con tratamiento tármico Solubilizar a Durante Enfriamiento en Precipitar a Durante Resist. a la trac. Límite 0,2 % Alarg. de rotura	T 4 485 a 502° C 1 hora mín. agua fría Temp. amb. 48 horas 43 kg/mm² 30 kg/mm² 20 %	T 4 488 a 499°C 1 hora mín. agua fría Temp. amb. 48 horas 48 kg/mm² 33 kg/mm²	T 6 460 a 499° C 1 hora mín. agua fría 118 - 124° C 24 a 28 hs. 58 kg/mm² 58 kg/mm² 11 %
Características generales Y aplicaciones principales		Alta resistencia mecánica y tena- cidad. Piezas for- jadas. Perfiles es- tructurales. Re- maches.	Resistencia me- cánica superior a la anterior. Cha- pas y refuerzos laminados de es- tructuras aero- náuticas. Rema- ches.	Muy alta resis- tencia mecánica. Piezas estructu- rales de uso aero- náutico.

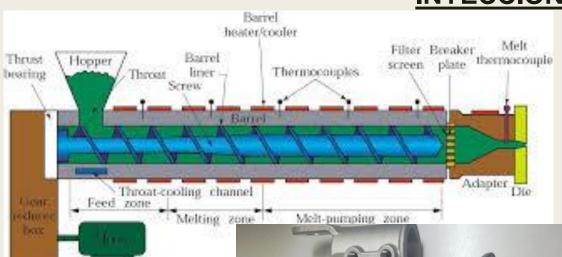


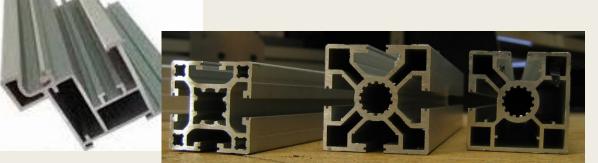
ALUMINIO

PROCESAMIENTO

LAMINACIÓN

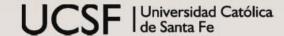





ALUMINIO

PROCESAMIENTO

<u>EXTRUSIÓN</u> <u>INYECCIÓN</u>



ALUMINIO

FUNDICIÓN

ALUMINIO

AUDI A8 Ahorro de 47% en peso

ALUMINIO

BOEING 747 82% es de Aluminio

ALUMINIO

Velero de 52 pies Estructura 100% AI

Magnesio

Material extremadamente durable, mecanizable y liviano.

Principalmente utilizado en aleación para lograr un equilibrio de propiedades.

Aluminio

Piezas fundidas

Circonio

Forja / Aeroespacial

- Silicio / tierras raras
 Motores / alta temp.
- Cobre

Fundición a presión

Titanio

Material altamente resistente durable, no corrosivo muy dúctil y liviano.

Principalmente utilizado en el ámbito médico, aeronáutico y químico por sus propiedades inertes.

- Alta conductividad
- Maleable
- -45% peso que el acero
- Punto de fusión elevado
- Baja reactividad

Oro y plata

Materiales considerados preciosos, presentan alta conductividad, ductilidad y maleabilidad.

Sus aleaciones son utilizadas para componentes específicos de gran valor.

- Uso en implantes odontológicos
- Conductores electrónicos
- Aleaciones para soldadura

