Design For Assembly (DFA)

1. Utilize Common Parts and Materials (standardization)

To facilitate design activities, to minimize the amount of inventory in the system, and to standardize handling and assembly operations.
Limit exotic or unique components because suppliers are less likely to compete on quality or cost for these components.

Product catalogue

Supplier list

2. Minimize Material Cost

3. Design for minimum number of Parts

- To determine the theoretical minimum number of parts, ask the following:
 - Does the part move relative to all other moving parts?
 - Must the part absolutely be of a different material from the other parts?
 - Must the part be different to allow possible disassembly?

Bridge and Base-plate ir

Recommendation for single part that performs bridge and base-plate functions

6. Reduce Assembly Time

How is part acquired, oriented, made ready for insertion?

How is it inserted/ fastened?

Reference: Boothroyd, Dewhurst, Winston, "Product Design for Manufacture and Assembly", 1994, In IIT Library

	Easy to align and insert	Not easy to align or insert	Not easy to align and insert	Severe difficulties
No access or vision difficulties	1.5	3.0	4.5	7.5
Obstructed access or restricted vision	3.7	5.2	6.7	9.7
Obstructed access and restricted vision	5.9	7.4	8.9	11.9

CASE II

Designing motor-drive assembly to sense & control its position on two steel guide rails.

Motor must be fully enclosed for aesthetic reasons and have removable cover for access so that position sensor can be adjusted.

Motor and sensor have wires that connect them to a power supply and a control unit, respectively.

Fig: Motor Drive Assembly

Fig. Initial design of motor drive assembly

Part	No.	Theoretical part count	Assembly time, s	Assembly cost, ¢
Base	1	1	3.5	2.9
Bushing	2	0	12.3	10.2
Motor subassembly	1	1	9.5	7.9
Motor screw	2	0	21.0	17.5
Sensor subassembly	1	1	8.5	7.1
Set screw	1	0	10.6	8.8
Standoff	2	0	16.0	13.3
End plate	1	1	8.4	7.0
End-plate screw	2	0	16.6	13.8
Plastic bushing	1	0	3.5	2.9
Thread leads	·		5.0	4.2
Reorient			4.5	3.8
Cover	1	0	9.4	7.9
Cover screw	4	0	31.2	26.0
Totals	19	4	160.0	133.0

	Easy to align and insert	Not easy to align or insert	Not easy to align and insert	Severe difficulties
No access or vision difficulties	1.5	3.0	4.5	7.5
Obstructed access or restricted vision	3.7	5.2	6.7	9.7
Obstructed access and restricted vision	5.9	7.4	8.9	11.9

Improved design

Part	No.	Theoretical part count	Assembly time, s	Assembly cost, ¢
Base	1	1	3.5	2.9
Motor subassembly	1	1	4.5	3.8
Motor screw	2	0	12.0	10.0
Sensor subassembly	1	1	8.5	7.1
Set screw	1	0	8.5	7.1
Thread leads			5.0	4.2
Plastic cover	1	1	4.0	3.3
Totals	7	4	46.0	38.4

4. Design for Parts Orientation and Handling

- The less an assembler has to move and orient both the original part and parts to be added, the faster and more trouble-free the process.
 - Part design should incorporate symmetry around both axes of insertion wherever possible.
 - Where parts cannot be symmetrical, the asymmetry should be emphasized to assure correct insertion or easily identifiable feature

Two subjects where symmetry facilitates orienting.

•With hidden features that require a particular orientation, provide an external feature or guide surface to correctly orient the part.

• Guide surfaces should be provided to facilitate insertion.

5. Design Within Process Capabilities

Process capability is Repeatability and Consistency of a manufacturing process.

Every equipment has limit.

Avoid tight
tolerances on
multiple,
connected
parts???

Consider mean of range to improve reliability and limit the range of variance.

		Viscosity g	grade ranges		
ISO (Int	ernational Organization	(cSt at 40 °C)			
grade nu	imbers	Minimum	Maximum		
2		1.98	2.42		
3		2.88	3.52		
5		4.14	5.06		
.7		6.12	7.48		
10	Mean 222	9.0	11.0		
15	mean :::	13.5	16.5		
22		19.8	24.2		
52		28.8	35.2		
40		41.4	50.6		
08		61.2	74.8		
100		90	110		

IT Grade	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Lapping															
Honing															
Super finishing															
Cylindrical grinding															
Diamond turning															
Plan grinding															
Broaching															
Reaming															
Boring, Turning															
Sawing															
Milling															
Planning, Shaping															
Extruding															
Cold Rolling, Drawing															
Drilling			1ea	an	?	??									
Die Casting															
Forging															
Sand Casting															
Hot rolling, Flame cutting															

	Nomina	Nominal Sizes (mm)									
over	1	3	6	10	18	30	50	80	120	180	250
inc.	3	6	10	18	30	50	80	120	180	250	315
IT Grade											
1	0.8	1	1	1.2	1.5	1.5	2	2.5	3.5	4.5	6
2	1.2	1.5	1.5	2	2.5	2.5	3	4	5	7	8
3	2	2.5	2.5	3	4	4	5	6	8	10	12
4	3	4	4	5	6	7	8	10	12	14	16
5	4	5	6	8	9	11	13	15	18	20	23
6	6	8	9	11	13	16	19	22	25	29	32
7	10	12	15	18	21	25	30	35	40	46	52
8	14	18	22	27	33	39	46	54	63	72	81
9	25	30	36	43	52	62	74	87	100	115	130
10	40	48	58	70	84	100	120	140	160	185	210
11	60	75	90	110	130	160	190	220	250	290	320
12	100	120	150	180	210	250	300	350	400	460	520
13	140	180	220	270	330	390	460	540	630	720	810
14	250	300	360	430	520	620	740	870	1000	1150	1300

Minimum = 110mm + 0mm = 110.000mm ...Maximum = 110mm + (0+0.220) = 110.220mmResulting limits 110.000/110.220Tolerance of hub, $t_{lb}=220\mu m$

Shaft 110e9... Maximum = 110mm – 0.072=109.928mm... Minimum = 110mm - (0.072 +0.087) = 109.841mm Resulting limits 109.841/ 109.928 Tolerance of shaft, t_{ls} =87µm

Tolerance is denoted as IT and it has 18 grades; greater the number, more is the tolerance limit.

The fundamental deviations for the hole are denoted by capital letters from A to ZC, having altogether 25 divisions.

Similarly, the fundamental deviations for the shaft is denoted by small letters from a to zc.

A1171	Upto		Fundamental Deviation (EL)									
over	(nd.)	A	В	С	CD	D	E	EF	F	FG	G	Н
	3	270	140	60	34	20	14	10	6	4	2	0
3	6	270	140	70	46	30	20	14	10	6	4	0
6	10	280	150	80	56	40	25	18	13	8	5	0
10	14	290	150	95		50	32		16		6	0
14	18	290	150	95		50	32		16		6	0
18	24	300	160	110		65	40		20		7	0
24	30	300	160	110		65	40		20		7	0
30	40	310	170	120		80	50		25		9	0
40	50	320	180	130		80	50		25		9	0
50	65	340	190	140		100	60		30		10	0
65	80	360	200	150		100	60		30		10	0
80	100	380	220	170		120	72		36		12	0
100	120	410	240	180		120	72		36		12	0
120	140	460	260	200		145	85		43		14	0
140	160	520	280	210		145	85		43		14	0
160	180	580	310	230		145	85		43		14	0
180	200	660	340	240		170	100		50		15	0
200	225	740	380	260		170	100		50		15	0
225	250	820	420	280		170	100		50		15	0
250	280	920	480	300		190	110		56		17	0

0	lle to (leal.)		Fundamental Deviation (es)									
(wer	ob ao (inci)	5	h	c	cd	d	e	ef	f	fg	g	h
	3	-270	-140	-60	-34	-20	-14	-10	-8	-4	-2	0
3	6	-270	-140	-70	-46	-30	-20	-14	-10	-6	-4	0
6	10	-280	-150	-80	-56	-40	-25	-18	-13	-8	-5	0
10	14	-290	-150	-95		-50	-32		-16		-6	0
14	18	-290	-150	-95		-50	-32		-16		-6	0
18	24	-300	-160	-110		-65	-40		-20		-7	0
24	30	-300	-160	-110		-65	-40		-20		-7	0
30	40	-310	-170	-120		-80	-50		-25		9	0
40	50	-320	-180	-130		-80	-50		-25		9	0
50	65	-340	-190	-140		-100	-60		-30		-10	0
65	80	-360	-200	-150		-100	-60		-30		-10	0
80	100	-380	-220	-170		-120	-72		-36		-12	0
100	120	-410	-240	-180		-120	-72		-36		-12	0
120	140	-460	-260	-200		-145	-85		-43		-14	0
140	160	-520	-280	-210		-145	-85		-43		-14	0
160	180	-580	-310	-230		-145	-85		-43		-14	0
180	200	-660	-340	-240		-170	-100		-50		-15	0
200	225	-740	-380	-260		-170	-100		-50		-15	0
225	250	-820	-420	-280		-170	-100		-50		-15	0
250	280	-920	-480	-300		-190	-110		-56		-17	0

То	loroncoc	IT grade	5	6	7 8
Status	Rule	Value	7i	10i	16i 25i
Satisf	i = 0.45*(D^(1/3))+0.001*D				
Satisf	IT5 = 7*i	standard	d tol	eran	ce unit, i
Satisf	IT6 = 10*i	i _ 0 15		/3	ת 100 מ
Satisf	IT7 = 16*i	l = 0.43	$(D)^{*}$	+ (J.001D
Satisf	IT8 = 25*i				

То	loranco	C	IT grade 5	
Status	Rule	5	Value 7i	
Satief	$i = 0.45*(D^{1/3})$)+0.001*D		
Satisf	T = 0.43 (D (1/3)) TT5 = 7*i	J10.001 D	standard to	le
Satisf	IT6 = 10*i			 \1/
Satisf	IT7 = 16*i		-i = 0.45(D))"/
Satisf	IT8 = 25*i			
Status	Input	Name	Output	
		i	.979495611	
	10	D		
		IT5	6.85646927	
		1	i	T i
		IT6	9.79495611	
		IT6 IT7	9.79495611 15.6719298	
		IT6 IT7 IT8	9.79495611 15.6719298 24.4873903	

Examples 34H11/c11

Hole 34H11 Minimum = 34mm + 0mm = 34.000mm ...Maximum = 34mm + (0+0.160) = 34.160mmResulting limits 34.000/34.160Tolerance of hub, $t_{lh}=160\mu m$

Shaft 34c11... Maximum = 34mm – 0.120=33.880mm... Minimum = 34mm - (0.120 +0.160) = 33.720mm Resulting limits 33.880/ 33.720 Tolerance of shaft, t_{ls} =160 µm

http://web.iitd.ac.in/~hirani/mel417.pdf

+0.048 +0.021 Prob : A shaft $(20^{+0.035})$ is inserted in a housing $(20^{0.000})$. Calculate:

 Maximum and minimum diameters of the shaft and housing-hole.

• Maximum and minimum interference between the shaft and its housing.

Analysis of Steam Turbine Coupling

Computati Quarter of

Von-Mises stress distribution

Design of COUPLING between Turbines .

Rotor dia =310 mm. Max power = 330 MW Speed = 3000 rpm

Friction... Statistical !!!!

μ	for	WOOd	d-on-wood	reported
in	i va	rious	articles.	

Listed material combination	μ_{s}	$\mu_{ m k}$
Wood on wood	0.25-0.5	0.19
Wood on wood	0.25-0.5	0.38ª
(drv)	0.20 0.0	the same that
Wood on wood	0.30-0.70	_
Wood on wood	0.6	0.32
Wood on wood	0.6	0.5
Wood on wood	0.4	0.2
Oak on oak	0.62	
(para. to grain)		
Oak on oak	0.54	0.48
(perp. to grain)		
Oak on oak	0.62	0.48
(fibers parallel)		
Oak on oak	0.54	0.34
(fibers crossed)		
Oak on oak	0.43	0.19
(fibers		
perpendicular)		

Two conditions are required to express radial stress in terms of radius.

$$\sigma_r = -p_i$$
 at $r = r_i$

$$\sigma_r = -p_o$$
 at $r = r_o$

$$\frac{\frac{C_1}{2} + \frac{C_2}{r_i^2} = p_i}{\frac{C_1}{2} + \frac{C_2}{r_o^2} = p_o}$$

41

Finding Stress in Hub

Finding Stress in shaft

Total interference
$$\delta_{\rm r} = \delta_{rh} - \delta_{rs}$$

or $\delta_{\rm r} = r_f p_f \left[\frac{r_o^2 + r_f^2}{E_h (r_o^2 - r_f^2)} + \frac{v_h}{E_h} + \frac{r_i^2 + r_f^2}{E_s (r_f^2 - r_i^2)} - \frac{v_s}{E_s} \right]$

Ex: A wheel hub is press fitted on a 105 mm diameter solid shaft. The hub and shaft material is AISI 1080 steel (E = 207 GPa). The hub's outer diameter is 160mm. The radial interference between shaft and hub is 65 microns. Determine the pressure exercised on the interface of shaft and wheel hub.

If hub and shaft are made of same materials : δ_r

$$= \frac{r_f p_f}{E} \left[\frac{r_o^2 + r_f^2}{\left(r_o^2 - r_f^2\right)} + \frac{r_i^2 + r_f^2}{\left(r_f^2 - r_i^2\right)} \right]$$

If shaft is solid :
$$\delta_{\rm r} = \frac{r_f p_f}{E} \left[\frac{2r_o^2}{\left(r_o^2 - r_f^2\right)} \right]$$

ANS: $p_f = 73$ MPa

Iterations !!!!

Question 1: A coupling hub (bore ϕ 309.168^{0.0}) is shrink fitted on a solid shaft of 310h6. The hub's outer diameter is 500 mm. Determine the minimum and maximum pressure exercised on the interface of shaft and coupling. Assume ($v_k = v_s = 0.29$; $E_k = E_s = 210 GPa$).

Through interference fit torque can be transmitted, which can be estimated with a simple friction analysis at the interface.

$$F_{f} = \mu N = \mu (p_{f} A)$$
$$F_{f} = \mu (p_{f} \pi d_{f} L)$$

$$Torque T = \frac{\pi}{2} \mu p_f d^2 L$$

+0.032

Pinion Base circle --Pitch circle - ω_p Pitch point, p_n ω_{e} Fitch circle-Base circle Gear Pressure angle ?? $\phi_I = \cos^{-1}$

Tooth curves of the mating Teeth need to be tangent to each other.

GEARS

Line of action is tangent to Both pinion & gear base Circles.

On changing center distance Line of action still remains Tangent to both base circles But slope changes.

AGMA introduced velocity factor in terms of pitch
line velocity (m/s) in Lewis equation.

$$K_{v} = \frac{3.05 + V}{3.05} \quad (cast iron, cast profile)$$

$$K_{v} = \frac{6.01 + V}{6.01} \quad (Cut \text{ or milled profile})$$

$$K_{v} = \frac{3.56 + \sqrt{V}}{3.56} \quad (Hobbed \text{ or shaped profile})$$

$$K_{v} = \sqrt{\frac{5.56 + \sqrt{V}}{5.56}} \quad (Shaved \text{ or ground profile})$$
Useful for preliminary estimation of gear size.
For V = 15 m/s , K_{v} = 5.2

- Cut or milled profile = 3.5
- Hobbed or shaped profile = 2.1
- Shaved or ground = 1.3

48

AGMA Bending Stress Equation

J = AGMA bending Geometry Factor depends on pressure angle, point of loading

 σ_{b}

Fm.

 $\frac{t}{T}K_aK_BK_m$

Rim thickne	ess factor		
$K_B = -2 m_B$	$_{B} + 3.4$	$0.5 \leq m_{\scriptscriptstyle B}$	< 1.2
$K_{B} = 1.0$	$m_B \geq 1.2$	where	$m_B = \frac{t_B}{h}$

Driven Machines

Power Source	Uniform	Light shock	Moderate shock	Heavy shock		
		Application factor, K_a				
Uniform	1.00	1.25	1.50	1.75		
(Electric motor,						
turbine)						
Light shock	1.20	1.40	1.75	2.25		
(Multicylinder)						
Moderate shock	1.30	1.70	2.00	2.75		

	Satis	Satisf σb = Kv*Wt*Ka*Kb*Km/(F*m*J)				
Case Study: Determine sa	fe ^{Satis}	Satisf Kv = sqrt ((5.56+sqrt(V))/5.56)				
arounded) ninion of snur a	ea Satis	Satisf V = pi()*D*N/60				
$\frac{\text{grounded}}{1120\text{Nm}} = 4500 \text{ mm}$						
$\frac{113010111}{2} (0.4500 \text{ rpm} \text{ with Sp} \text{ Satisf Wt} = 1/(D/2)$						
the pressure angle = 20°, nu Satisf EOS = Sv/ginMPA						
<u>module(m)=6mm</u> . The cor	re	1 1 00 0 y/				
material varies in the range cases Variables						
Standard deviations in torg	U (Status	Input	Name	Output	Unit	
rpm and in pitch diameter	0.		Kv	1.46683671		
manufacturing errors the fac			Wt	12988.5057	Ν	
<u>52mm</u> . Due to possibilities of		1.25	Ka			
		1	Kb			
<u>effective face width</u> may va	ari	1.6	Km			
52mm.		.052	F		m	
		.006	m		m	
		.38	J			
			V	40.9977841	m/s	
$V = 5.56 + \sqrt{V}$ [5]	5.56		D	.174	m	
$K_v = \sqrt{-5.56} \qquad K_v = \sqrt{-5.56}$		4500	N		rpm	
		29	Тр			
		1130	Т		N.m	
Factor J for 29 number of tee			σinMPA	321.390301	MPa	
			FOS	1.08901855		
		350	Sy		MPa	

Statistical Approach $\sigma_{h} = f(K_{v}, W_{t}, F, m, J, K_{a}, K_{m}, K_{B})$

$$\sigma_{\sigma_{b}} = \sqrt{\left(\frac{\partial \sigma_{b}}{\partial K_{v}}\right)^{2} \sigma_{K_{v}}^{2} + \left(\frac{\partial \sigma_{b}}{\partial W_{t}}\right)^{2} \sigma_{W_{t}}^{2} + \left(\frac{\partial \sigma_{b}}{\partial F}\right)^{2} \sigma_{F}^{2} + \left(\frac{\partial \sigma_{b}}{\partial m}\right)^{2} \sigma_{m}^{2} + \left(\frac{\partial \sigma_{b}}{\partial K_{m}}\right)^{2} \sigma_{J}^{2} + \left(\frac{\partial \sigma_{b}}{\partial K_{a}}\right)^{2} \sigma_{K_{a}}^{2} + \left(\frac{\partial \sigma_{b}}{\partial K_{m}}\right)^{2} \sigma_{K_{m}}^{2} + \left(\frac{\partial \sigma_{b}}{\partial K_{B}}\right)^{2} \sigma_{K_{B}}^{2}$$

 W_t depends on the applied torque (T) and pitch diameter (D) ($W_t=2T/D$). Therefore $f(W_t)$ is to be replaced by f(T,D).

 K_v is function pitch line velocity (V). The V is function of angular speed (N) and pitch diameter (D).

 $\left(\frac{\partial\sigma_b}{\partial T}\right)^2 \sigma_T^2 + \left(\frac{\partial\sigma_b}{\partial F}\right)^2 \sigma_F^2 + \left(\frac{\partial\sigma_b}{\partial m}\right)^2 \sigma_m^2 + \left(\frac{\partial\sigma_b}{\partial J}\right)^2 \sigma_J^2 + \left(\frac{\partial\sigma_b}{\partial K_a}\right)^2 \sigma_{K_a}^2 + \left(\frac{\partial\sigma_b}{\partial K_b}\right)^2 \sigma_{K_a}^2 + \left(\frac{\partial\sigma_b}{\partial K_b}\right)^2 \sigma_{K_a}^2 + \left(\frac{\partial\sigma_b}{\partial K_b}\right)^2 \sigma_{K_b}^2 + \left(\frac{\partial\sigma_b}{\partial K_b}\right)^2 + \left(\frac{\partial\sigma_b}{\partial K_b}\right)^2 + \left(\frac{\partial\sigma_b}{\partial K_b}\right)^2 + \left(\frac{\partial\sigma_b}{\partial K_b}\right)$ σ_{σ_b} =

Is there any to consider the over load factor (K_a) ?

AGMA bending geometry factor (J) is function of number of teeth and nominal pressure angle, which will have zero standard deviation. No need to consider standard deviation of J. Similarly, deviation in value of module (m) is almost negligible.

EX: A gear pair ($Z_P = 23$, $\phi = 20^\circ$, $Z_q = 24$, m=1.75, F=10.0 mm) transmits 8 N.m torque from crankshaft (rotational speed 8000 rpm) of single cylinder IC engine to wheels. Bore diameter of pinion is 17 mm, and bore dia of gear is 20 mm. Use AGMA bending stress formula to determine the maximum bending stress. Assume gears are grounded. Given: F = 10 mm, m =1.75, $W_{t} =$ 8000/(23*1.75*0.5) **Driven Machines** Load distribution factor K_m **Power Source** Uniform Light shock Moderate shock Heavy shock Application factor, K_a Face K_m Uniform 1.00 1.25 1.50 1.75 width, mm (Electric motor, turbine) < 50 1.6 1.20 1.40 1.75 2.25 Light shock (Multicylinder) 2.00 Moderate shock 1.30 1.70 2.75 57 4/10/2015

$$K_{a} = 2.0 \qquad K_{m} = 1.6 \qquad K_{v} = \sqrt{\frac{5.56 + \sqrt{V}}{5.56}} \quad (\text{ground gears})$$

$$d_{p} = 23*1.75 = 40.25 \text{ mm}$$

$$V = \frac{\pi \ d_{p} \ N}{60} = \frac{\pi \ (40.25) \ 8000}{60} \rightarrow 16.86 \ m/s$$

$$K_{v} = \sqrt{\frac{5.56 + \sqrt{V}}{5.56}} = 1.3185$$

$$d_{proot} = d_{p} - 2*1.25*1.75 = 35.875$$

$$h_{t} = 2.25*1.75 = 3.9375 \ mm$$

$$t_{R} = 0.5 (d_{proot} - Bore_{p}) = 9.4375$$

$$m_{B} > 1.2 \Rightarrow K_{B} = 1$$

$$\sigma_{b} = \frac{K_{v} \ W_{t}}{F \ mJ} \ K_{a} \ K_{B} \ K_{m}$$